
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

Profile-based protocol for data interactions in Body
Sensor Networks

Mitko Petrov Shopov, Nikolay Rumenov Kakanakov and Galidiya Ivanova Petrova

Abstract - The paper presents an application level protocol

for data interactions in local networks of embedded devices
and its adaptation for Personal Health Systems and Body
Sensor networks. The protocol uses profiles to improve
scalability and applicability and to ease the customization for
different application areas. Profiles are described in XML to
be easily processed and written. The profile can describe the
device parameters and application-specific context. Finally, to
demonstrate the use of profiles as an extension for describing
the particular application of the protocol the scenario of body
sensor network will be used.

Keywords – Body Sensor Networks, CNDEP, Profiles

I. INTRODUCTION

 The progress of the information technology and
electronic equipment has become a base for development
of Internet and electronic services in every part of the
society. Adoption of e-health, e-learning, e-government,
and other e-services is no longer ideology but has its
realizations, based on Internet and Web technologies.
These technologies are applicable for information and
services interaction and provide pervasive user interface.
The real application of these e-services depends not only
on the user access and information flows on the upper
layers. Technologies should be developed on the lower
device levels where the real instrumentation works. It will
allow bringing more e-services to the home of the user. In
the case of e-health services users must not only access the
information but to provide raw data to the medical
personnel. In many currant e-health services user can
provide its physiological and contextual parameters (e.g.
ECG, EEG, Heart and respiration rates, blood pressure,
oxygen saturation (SpO2), body temperature, glucose level,
spatial location and etc.) filling forms. The problem is how
user will measure these parameters without instrumentation
and medical control. The use of Personal Health Systems
(PHS) and Body Sensor Networks (BSN) provides a
solution to this problem. The interaction of PHS with
medical servers and users will follow the ideology of e-
services and Web technologies, but appropriate protocols
for data interaction in BSN should be developed and

appropriate communication technologies should be chosen.
There are some realizations of the lower level data
interaction based on industrial protocols or adopted form
Web. A specific profile for medical devices is added in
CANOpen [1] but the CAN communication is not
applicable in BSN because it has no wireless realization. A
Device Profile for Web Services [2] provides a
communication independent framework for data
interaction, but the use of SOAP requires more memory
and processing power.
 In this paper an application level protocol for data
interaction in Personal Area Networks and BSNs is
presented. The protocol is developed for data
communications in controller networks and is based on
profiles to be easily adaptable in different application areas.
Profiles define application scenarios and device
parameters. As an example a profile for personal healthcare
is presented.

II. PROFILE-BASED VERSION OF CNDEP

A. CNDEP – general information and communication
scenarios

 CNDEP is a protocol for control and monitoring in
TCP/IP based networks of embedded devices. It resides on
the application layer of the TCP/IP protocol stack and uses
UDP as a transport protocol. CNDEP is an asymmetric,
byte-oriented protocol that exchange messages between
embedded devices. Messages contain sequential bytes
representing data and metadata, encoded in ACSII format.
Message exchange is based on request / reply mode except
for publish/subscribe mode where on one request multiple
replies are given back. The main functionality is resided in
the server side but error processing, packet loss and
complex data processing are resided in the client. The idea
is that the server-side is embedded device or smart
sensor/actuator with limited processing power [4].
 The protocol is designed to reflect the most typical
deployment scenarios applicable for controller networks
(figure 1). The four basic scenarios are [3]:

a) polling: master can request particular measurement (in
case of sensor) or control (in case of actuator); M. Shopov is with the Department of Electronics, Faculty of

Electronics and Automatics, Technical University – Sofia,
Plovdiv branch, 61 St. Petersburg Blvd., 4000 Plovdiv, Bulgaria,
e-mail: mshopov@tu-plovdiv.bg

N. Kakanakov is with the Department of Computer Systems
and Technologies, Faculty of Electronics and Automatics,
Technical University – Sofia, branch Plovdiv, 61 Sankt
Petersburg Blvd., 4000 Plovdiv, e-mail: kakanak@tu-plovdiv.bg

G. Petrova is with the Department of Electronics, Faculty of
Electronics and Automatics, Technical University – Sofia,
Plovdiv branch, 61 St. Petersburg Blvd., 4000 Plovdiv, Bulgaria,
e-mail: gip@tu-plovdiv.bg

b) configuration: master can set configuration parameters
concerning slave device operation;
c) alarm handling: slave device could be configured to
generate alarm messages in case of error or occurrence
of particular condition;
d) continuous monitoring: the master requests
measurement information once and starts to collect
continuous time series;
Implementation of these scenarios requires three kinds of

communication services:

ANNUAL JOURNAL OF ELECTRONICS, 2009

o request/response: this kind of communication
can be used for scenarios a) and b)

o spontaneous: similar to request/response, but
with changed roles between master and slave;

o subscription: an alternative to polling
mechanism; after subscription request the roles
of master and slave changes;

FIG. 1: SCENARIOS FOR REMOTE SERVICES: A) POLLING B)

CONFIGURATION C) ALARM HANDLING D) CONTINUOUS MONITORING

 The state transition diagram (STD) of the server-side
protocol implementation is shown on fig. 2 and the state
transition conditions (triggers) are shown on table 1. After
power on or hardware reset the protocol enter in
initialization state. In this states prerequisites for the
protocol work are carried out as network and socket
preparation, device advertisement and etc. After successful
initialization the protocol enters the IDLE state in which it
stays most of the time. In this state the server side listens
for the incoming messages or waits for events connected to
device’s work or changes in the environment. The IDLE
state can be designed for energy efficiency if needed.
Incoming messages are decoded (state DECODE) to define
its category (simple or containing data) and command type
(test, read, write, execute, register/unregister subscriber,
clear alarm).
 These different command types define different states.
Test command is used (if appropriate) for keep-alive
messages that master uses to check devices’ presence in the
network. If a specific event appears in the device it
broadcasts alarm messages until it receives clear alarm
command. Alarm events can be defined using relevant
write command – they can be application or device
specific. Read command is used to read internal data that
can be set by write command (some specific values can be
read-only e.g. device ID).
 Execute command is used for specific control functions
– it causes execution of command on the device. This
execution can be restarting specific task on device,
contacting sensor or actuator, reconfigure protocol

parameters. Register/unregister subscriber is used for
monitoring – client registers its address and the data it is
interested in and when data changes server spontaneously
sends data to client(s).

FIG. 2: SERVER-SIDE STATE-TRANSITIONAL DIAGRAM

 When client no longer needs this data it uses unregister.
There are two ways to read data from device – read or
execute. The first way takes less time to proceed but in the
latter more actual data is read on demand.

TABLE 1. TRIGGERS FOR STATE TRANSITION

(1), (3) At Power on, HW reset, or SW restart
the initialization state is entered
autonomously

(2) Initialization finished
(4) Alarm condition detected
(6) Subscription data ready
(8) Request received
(10) Subscribe request received
(12) Unsubscribe request received
(14) Alarm condition acknowledged
(18) Request for data from memory
(19) Request to write data to memory
(20) Request for execution of command on

the embedded device
(21),(22),(23) Request processed – send appropriate

reply message
(5),(7),(9),(11),
(13),(15),(17),
(24)

State’s branch processing finished,
return to listening for requests and
interrupts from timers and alarms

ANNUAL JOURNAL OF ELECTRONICS, 2009

B. CNDEP Profiles

The CNDEP protocol uses profiles to improve its
scalability and applicability and to ease the customization
for different application areas. Profiles are described in
XML to be easily processed and written. The availability of
XML scheme gives provisions for high-level validation in
the design state of a protocol profile. The profile can
describe the device parameters and application-specific
context.

Several profiles can be merged to form one complete
profile. To avoid duplications, deletions and other similar
errors profiles are separated vertically by a parameter
called level. The rule is that profiles with higher level
numbers have precedence and their rules and commands
cannot be replaced by profiles with lower level numbers.

The structural description of CNDEP protocol in XML
profiles along with the possibility for strict validation using
XML schemes gives possibility for development of a
development tool for automatic code generation producing
the skeleton of the application with blank application
function to be filled by embedded programmers.

Distributed systems for control and monitoring typically
have hierarchical structure (figure 3). In such networks
communications can be described in two groups – one for
system identification and configuration, and one for
monitoring and control of the environment.

FIG. 3: EXAMPLE HIERARCHICAL STRUCTURE OF A PERSONAL

HEALTHCARE DISTRIBUTED SYSTEM

In the CNDEP profile these groups are reflected by
deviceProperties and applicationProperties. The following
fragment of XML general profile illustrates this:

<profile level=”0” name=”general”>
 <group name=”deviceProperties”>
 ……
 </group>
 <group name=”applicationProperties”>
 ……
 </group>
</profile>

 Each of these groups can contain multiple commands.
Some commands are more complex than others and can
contain sub-commands. Commands and sub-commands
consist of description, one or more requests and responses.

Commands and sub-commands can be of any of the
following types:
<xs:enumeration value="read /> "
<xs:enumeration value="write" />
<xs:enumeration value="execute" />
<xs:enumeration value="publish" />
<xs:enumeration value="subscribe" />

The description field should be useful in automatic code-
generation development tools. Request and responses has
category and context type attributes used for their
interpretation at the opposite side. Among with standard
context types some application specific context type may
be included (e.g. degC used to describe a floating point
number representing degree Celsius).

III. Use-case Scenario

 To demonstrate the use of profiles as an extension for
describing the particular application of CNDEP protocol
the scenario of body sensor network will be used. The
scenario consists of ECG sensor equipped with Bluetooth
interface [5], embedded platform based on Cirrus EP9302
microcontroller, industrial Bluetooth module [6], and Linux
OS [7].

A. Body Sensor Network and Personal Server

 Body sensor network (BSN) is a special case of wireless
sensor networks. It consists of a set of miniaturized, low
cost, wearable or implantable bio-sensors and actuators that
are expected to provide continuous monitoring of the
patient’s physiological and contextual parameters (e.g.
ECG, Heart rate, blood pressure, oxygen saturation (SpO2),
body temperature, glucose level and etc.). The network is
usually coordinated by Personal server [8], [9].

B. Personal Server

 Personal Server is responsible for transparent interface to
BSN, interface to the user, and an interface to the medical
server, performing high-level data processing, analysis and
temporary local storage. The interface to BSN should deal
with network configuration and management. The
configuration tasks include sensor node registration,
initialization, customization, calibration, and setup of
secure communication. The management tasks include
channel sharing, time synchronization, data retrieval and
processing, and data fusion. The most adoptable platforms
for realization of personal server are PDAs and smart cell
phones due to their size, processing and communication
capabilities. Other possibilities are tablet PCs, laptops, and
custom specially designed microprocessor-based devices.
[10], [11].

C. ECG CNDEP Profile

 There is a profile called General that includes all the
basic functions that are common to most embedded
applications. This profile is of level zero and will not
overwrite command definitions in higher level profiles. The
ECG profile rely on the common command of General

ANNUAL JOURNAL OF ELECTRONICS, 2009

profile and include only commands specific to the
particular Bluetooth-enabled ECG module – [5]. Some of
the commands definitions in the profile however are not yet
functionally supported by the module.
 The following fragment illustrates definition of a
command from deviceProperties group used to check the
remaining battery charge of the ECG module.
<command name="Check battery status"
 type="read" id="127">
 <request category="simple" />
 <response category="data"
 contextType="percentage"/>
 <response category="error"
 contextType="decimal" />
</command>

 The applicationProperties group of commands includes
the following commands:

o Get ECG Data: used to obtain a single sample of
ECG data by the mechanism of polling;

o Get Bulk ECG Data: used to obtain several samples
of ECG data at once. Useful for power-saving;

o Get/Set Mode: used to set the number of channels. If
the user is interested in less than the maximum
number of channels, the rest could be skipped. Also
useful for power-saving;

o Get/Set Precision: set ADC precision (if possible).
Less precision (if applicable) means less data, less
transmissions, and less power consumption;

o Subscribe/Unsubscribe: users can issue this
command to subscribe/unsubscribe for periodic ECG
data;

o Publish: used by the ECG module to send
subscription data to all registered clients.

 Some of the commands’ definitions are illustrated by the
following fragment.
<command name="Get Bulk Data"
 type="read" id="?">
 <description>Get several samples at once
 (power-save modes).</description>
 <request category="simple" />
 <response category="data"
 contextType="multiECG" />
 <response category="error"
 contextType="decimal" />
</command>

<command name="Set precision"
 type="execute" id="?">
 <description>Set ADC Precision
 [number of bits]</description>
 <request category="data"
 contextType="decimal" />
 <response category="ack" />
 <response category="error"
 contextType="decimal" />
</command>

<command name="Subscribe" type="subscribe"
 id="?">
 <request category="data"
 contextType="ipAddress" />
 <response category="ack" />
 <response category="error"
 contextType="decimal" />
</command>

IV. Conclusions and Future work

 In this paper an adaptation of a protocol for data
interactions in local networks of embedded devices is
presented. The introduction of profiles in protocol design
should give more flexibility and scalability by allowing
embedded applications’ designers to easily customize and
optimize the protocol to their needs. The XML description
of the profiles makes it easily processed and written, and
along with XML validation makes the protocol definition
more error-proof and suitable for automatic generation of
the code of its implementation files.
 Some future work includes design and development of
tools for automatic generation of code from XML profiles
for some pilot embedded platforms and operating systems
(if OS is available). Another area for future work includes
extending the protocol design with new profiles for new
type of sensors and actuators and application areas.

V. Acknowledgements

The presented work is supported by Technical

University of Sofia, project “091ni060-17/2009” – entitled
“Development of experimental patient monitor for data
collections in body sensor networks” under contract
“091ni060-17/2009”.

REFERENCES

[1] CiA 412-1,DS v1.0: CANOpen Profiles for medical devices,
2006.
[2] Jammes, F., H. Smit, Service-oriented architectures for
devices - the SIRENA view, Proc. 3rd IEEE International Conf. on
Industrial Informatics, pp. 140- 147, 10-12 Aug. 2005.
[3] Topp, U., P. Mueller. Web based service for embedded
devices, Lecture Notes in Computer Science, Vol.2593, pp. 141-
153, 2003.
[4] N. Kakanakov, I. Stankov, M. Shopov, and G. Spasov,
Controller Network Data Extracting Protocol – design and
implementation, Proc. CompSysTech Conference, V. Tarnovo,
Bulgaria, 2006, pp.IIIA-14-1 – IIIA-14-6.
[5] Iliev I., Tsvetanov D., Matveev M., Naydenov S., Krasteva
V., Mudrov N., Implementation of high resolution wireless ECG
data acquisition system in intensive coronary care unit, Proc.
International Conference Advanced Information and
Telemedicine Technologies for Health ’2005, Minsk, Belarus,
pp. 79-84, November 2005.
[6] Parani SD 100 Bluetooth Serial Adapter Homepage –
http://www.sena.com/products/industrial_bluetooth/sd.php.
[7] Port of Linux Debian OS for ARM –
http://www.debian.org/ports/arm/.
[8] Park, S. and Jayaraman, S. , Enhancing the Quality of Life
Through Wearable Technology, IEEE Engineering in Medicine
and Biology, vol. 22, no. 3, pp. 41-48, May/June 2003.
[9] Lo, B. and Yang, G., Body Sensor Networks – Research
Challenges and Opporunities, Proc. Antennas and Propagation for
Body-Centric Wireless Communications, pp. 26-32, April 2007.
[10] Istepanian R., Jovanov, E., and Zhang Y.T., Beyond
Seamless Mobility and Global Wireless Health-Care
Connectivity, IEEE Transactions on Information Technology in
Biomedicine, vol. 8, no. 4, pp. 405-441, Dec. 2004.
[11] Yu, P., Ming, X., Hui Yu, and Guo Q. Xiao, The Challenges
for the Adoption of M-Health, Proc. IEEE Conf. on Service
Operations and Logistics, and Informatics (SOLI '06), pp.181-
186, June 2006.

