
ANNUAL JOURNAL OF ELECTRONICS, 2011, ISSN 1313-1842

Using GNU/Linux tools for creating ARM9-based
embedded applications

Nikolay Rumenov Kakanakov and Mitko Petrov Shopov

Abstract – The paper aims to provide a reference manual
for using Linux/GNU tools in developing embedded Internet-
ready applications for ARM9 based systems. It provides steps-
by-step guide for configuring the bootloader, Linux kernel,
toolchain and developing environment. As an example
ARM920T based development board (EP9302) is used,
running 2.6.32 kernel and embedded application that reads
data from sensor on serial port and provides it as Web
service.

Keywords – ARM9, Emdebian, toolchain, Eclipse

I. INTRODUCTION

In modern digital and electronic society embedded
systems are ubiquitous. New embedded world is built on
new dynamic, distributed and collaborative architectures
and environment. That leads to new requirements to the
hardware and software of the embedded systems – low
power consumption, short response time, high availability,
seamless human-machine interfaces, etc. Some of the
embedded application must cover this requirements at any
price while other (e.g. home and customer electronics) at
low price. Furthermore the design and development time
should be small enough to cover the needs of the market. A
way to cover that need of small time-to-market and low
price is to use of-the-shelf software architectures, operating
systems, development environments that are familiar to the
engineers. The solution in that field, not new but gathering
popularity with the last hardware achievements, is the
application of embedded Linux boards and solutions [1]
[2].

The reason for the popularity of Linux in the embedded
applications is its layered structure, integrated security,
native writing in C/C++, clearest TCP/IP stack, many
protocols and drivers distributed with the OS. Following
the open source ideology, embedded Linux engineers can
share thoughts, ideas, technologies and even device drivers
but keeping the company specific parts closed.
Furthermore, all popular development tools that Linux
programmers are familiar with can be easily configured as
embedded IDEs and reduce the difference between the host
and target systems [2] [3].

As an example application, a system for remote energy
management is used. It is implemented on EP9302

embedded board from Olimex [7]. It reads the values from
energy management sensor via serial port, stores them on
USB flash drive and provides their graphical representation
as a Web service [4].

The rest of the paper provides some materials on design
and development of Linux embedded systems. It discusses
the hardware-specific tools (e.g. bootloader); choosing,
configuring and building an embedded Linux kernel; and
creating user application for the embedded system.

II. CHOOSING THE APPROPRIATE ARCHITECTURE

When choosing the hardware platform and vendor for an
embedded Linux application, the designer should have in
mind not only the general parameters but is the hardware
(architecture, CPU, peripheral modules) are supported by
Linux kernel. In general terms Linux is the kernel and
sometimes support libraries for creating applications (libc,
binutils, gcc). Some hardware vendors provide specially
built kernels for their platforms. In most cases it is not the
best idea as the Linux packages and drivers are ever
evolving together with the standard kernel. If a custom
kernel is used, the ability to update the libraries and tools
will be difficult. The better way is to choose a hardware
architectures supported by the standard kernel. The most
promising hardware architecture for Embedded Linux
systems is the ARM core. It is used in many everyday tools
like MP3 players, mobile phones, DVD/Satellite players,
routers, access points.

A. ARM9 Family

Many hardware vendors develop products using the
ARM9 core and especially ARM920T. It is ARM9 core
with cache, protection unit, and Memory Management
Unit. It is a Harvard cache architecture processor that is
targeted at multiprogrammed applications where full
memory management, high performance, and low power
are all-important. The separate instruction and data caches
in this design are 16KB each in size, with an 8-word line
length. The ARM920T processor implements an enhanced
ARMv4 architecture with MMU to provide translation and
access permission checks for addresses [6].

As ARM9 is just a IP core and architecture, there are
many vendors that produce processor chips and embedded
boards based on this core. Some of most famous ones are:
Freescale Semiconductor (i.MX and Kinetis series),
Marvell (PXA family), ST Microelectronics (SPEAr
eMPUs, STM32, STR7, and STR9), Texas Instruments
(DaVinci, Sitara™, and Stellaris family), Xilinx
(Zynq-7000 Extensible Processing Platform). Among this

N. Kakanakov is is with the Department of Computer Systems
and Technologies, Faculty of Electronics and Automation,
Technical University - Sofia, Plovdiv branch, 25, Tsanko
Djustabanov str., 4000 Plovdiv, Bulgaria, e-mail: kakanak@tu-
plovdiv.bg

M. Shopov is with the Department of Computer Systems and
Technologies, Faculty of Electronics and Automation, Technical
University - Sofia, Plovdiv branch, 25, Tsanko Djustabanov str.,
4000 Plovdiv, Bulgaria, e-mail: mshopov@tu-plovdiv.bg

mailto:kakanak@tu-plovdiv.bg
mailto:kakanak@tu-plovdiv.bg
mailto:mshopov@tu-plovdiv.bg

ANNUAL JOURNAL OF ELECTRONICS, 2011, ISSN 1313-1842

mastodon vendors there are some popular chips with low
price Cirrus Logic EP93xx series.

Several vendors provide embedded boards based on
Cirrus Logic EP93xx ARM chips. One that is easy to find
on the Bulgarian market is Olimex Ltd. Plovdiv. Their
board is built with Ethernet controller, 2 USB and 2 serial,
SD/MMC, IrDA and JTAG interfaces [7].

B. Bootloader

To enable an embedded hardware for an operating
system like Linux, a bootloader is needed. This is a special
part of the embedded code that prepares the hardware for
initial boot and provides commands and environment to
load the operating system kernel. To be flexible and fully
functional, the bootloader must provide some user interface
for configuration, initialization script for main peripheral
devices (e.g. serial, USB, network, Flash memory) and
different mechanisms to find/load the kernel. The most
popular bootloaders for such hardware platforms are U-
Boot and RedBoot. The former is preferred in applications
that want to strictly apply GPL and has more limited
resources and is almost a standard for ARM based devices.
The latter is developed by RedHat and was created to boot-
up e-Cos operating system. It gains its popularity due to its
flexibility and many supported platforms and operating
systems (e.g. e-Cos, QMX, Linux, Unix, BSD, Embedded
Windows) [1].

In this paper the RedBoot will be used as an example
because most of EP93xx boards are shipped with preloaded
RedBoot binary.

RedBoot provides commands for configuring the initial
environment, load and execute the operating system kernel
(or eventually call other OS specific loader). In the case of
Linux, the environment configuration depends on the
chosen way of loading the kernel. The most popular ways
to load the kernel is from chip's flash memory, from tftp, or
from http. The first way is best suited for working boards,
while the latter two are suitable for the development time.
For using them some network configuration should be
made for the RedBoot environment [12].

C. RedBoot binaries. Building Linux Kernel.

The RedBoot environment not only provide mechanisms
for the developers to contact the board, load kernel images
and start the OS. It also provides an environment to execute
applications. This applications should be built as an e-Cos
application, for freestanding environment (no standard
libraries) and should be statically linked. This special
feature given to the compiler and linker are needed because
the RedBoot environment do not load any additional
libraries. Binaries created this way must be started giving
the entry point manually as long as there is no library for
searching the main function.

Embedded systems usually come with strict
requirements for memory and cpu usage. While one can
use a general Linux kernel, it is more appropriate to build a
custom kernel with respect to specific hardware and
application requirements. To build a custom kernel one

should first obtain a copy of the Linux kernel source tree
[11]. The next step is to apply all the necessary kernel
patches specific for the hardware platform you build the
kernel for. All the necessary modules could be build-in
with the kernel or could be build separately as loadable
kernel modules. With the first approach all of the
functionality will constantly reside in memory, even if not
used. That will waste valuable memory resources. On the
other side loadable modules require times to be loaded and
are not applicable in some embedded applications. To start
customizing your kernel you could use one of the available
configuration tools, with the most used being make
menuconfig. Here you should remember to specify the
architecture you are building for. To build the kernel a
cross-compiler for ARM should be used. The result is a
custom and optimized Linux kernel. It could be in
compressed and not compressed image. The compressed
image could reduce memory footprint when image is saved
on internal flash memory, but will require more time before
loading after reset.

III. CHOOSING THE LINUX DISTRIBUTION

The main view of the Linux OS is a kernel and a number
of packages. As long as the kernel development is
controlled by single public body [11], the packages are
developed in many independent branches, called
distributions. To build an embedded Linux application, one
needs to obtain a kernel (and eventually patch it for specific
hardware) and then choose the distribution that best suits
the application to obtain the packages from. Many general
purpose distributions now support ARM target but in some
cases it is better to look for embedded distributions. There
are many commercial and open source embedded Linux
projects, but in current paper the Embedded Debian Project
(Emdebian) is chosen. It is based on the Debian distribution
but some of the packages are optimized in sizes and
memory use and cross-toolchains are added. Official
support is available for i386, amd64, powerpc, armel, mips,
mipsel [8].

Using EP93xx board for embedded Linux allows several
different paces to position the root file system. For very
small size applications the best way is to build a archived
ramdisk and store it in the internal flash. When booting up
the board it extracts the ramdisk in the operating memory
and uses it as root file system, providing very fast access to
the storage during the work of the system, but lacking of
non-volatile data storage. For the development time the
best ways are to use Network File System or USB drive, as
they can be edited easily from the host computer. For these
features to work the kernel should be compiled with NSF
and SATA support. The mounted USB drive is recognized
as SATA drive from the kernel. For real applications the
best way is to use the SD/MMC card interface. For this
purpose a special patch [9] must be applied to the kernel to
support MMC block devices and MMC drive as root file
system. For some version of the hardware (e.g. EP9312,
EP9315) there is and IDE interface and hard drive can be
used for the root file system. It is best if the application

ANNUAL JOURNAL OF ELECTRONICS, 2011, ISSN 1313-1842

should store big amounts of data for a long time without
restrictions to the consumed energy.

To use Emdebian on the embedded board means simply
to build root file system for the device using Emdebian
cross development tools and package repositories. The
creation of the root file system is relatively easy process,
unless using the cross development. Emdebian provides
two ways for creating root file system – debootstrap and
multistrap. Multistrap is a tool that starts off doing
essentially same job as debootstrap but uses an entirely
different method based on apt and extended to provide
support for multiple repositories, using a configuration file
to specify the relevant suites, architecture, extra packages
and the mirror to use for each bootstrap. Multistrap works
from pre-built binary packages and so creating a root file
system requires that the full set of packages are available in
a repository that multistrap can use. If different functional
changes from those used in Emdebian are needed, the
better tool is standard debootstrap. Using debootstrap has
two main stages. The first stage is downloading the
packages from the repository that contains for the target
architectures and unpack them. For cross platform purposes
the option 'foreign' is used. It makes the initial unpack
phase of bootstrapping only, and a copy of debootstrap
sufficient for completing the bootstrap process will be
installed in the target file system. Other important option is
'arch', which specifies the target architecture (i386, arm,
mips, etc.). After creating the initial phase, second stage of
actual building the packages should be run on the target
architecture or with cross-build and chroot environment.

IV. CREATING APPLICATIONS

For developing application software for the embedded
Linux systems, one may use different integrated
development environments. Most of the environments are
specially built and/or configured for the targeted board
from its vendor. As long as full featured Linux runs on the
board, the application software can be built there. It works
well for small projects but when some bigger project is
developed the cross-platform compilers, linkers, builders
and development environments are needed. For most
ARM-based embedded platforms the most popular
integrated development environment is probably Eclipse
project. It is a Java based environment supporting multiple
languages and application fields. It has a special sub-
project CDT (C/C++ Development Tooling) [10]. In fact
CDT provides an environment for writing source code with
syntax highlighting, content advisor, and platform for
integration of multiple plug-ins and external build systems.
For the CDT project, the GNU Build Systems (so called
automake) is used. It includes compilers, assemblers,
linkers, loaders and auto-configuration tools for creating
make files. The reason of the hegemony of Eclipse CDT in
embedded applications development is that the build
system is called externally using the make tool and can be
substituted with other build systems. Thus, using cross-
platform tools is relatively easy – installing the appropriate
toolchain and configure the Eclipse environment to use it.
Assuming that development of embedded software differs a

little from other C/C++ projects, some plug-ins can be
added to support and facilitate the embedded developers.

In software development the term toolchain is often used
to represent a set of tools used in a chain to produce
executables. Most of the toolchains are based on tools
developed by the GNU open-source project. Gnu
toolchains consist of cross-compiler, linker, C-libraries and
cross-debugger. Several ARM cross-toolchains are
available for use by embedded developers. Some of them
are distributed as source code that could be compiled while
other comes in a pre-build binaries. Some of the popular
ARM cross-toolchains are GnuARM, Emdebian, Code
Sourcery, Yagarto, and WinARM. To integrate a toolchain
in the standard build process of Eclipse CDT an
appropriate plug-in is needed. One can use an existing
plug-in or alternatively can develop its own. Eclipse plug-
ins that support the most popular ARM cross-toolchains are
widely availability for free [5].

ARM cross-debugger could be used to remotely debug
an application using serial or Ethernet connection with the
remote target. Eclipse CDT provides a graphical interface
to the cross-debugger, but is not capable to start the remote
gdb server on the target hardware. For that purpose
openOCD should be used. OpenOCD JTAG is a open-
source on-chip debug solution for targets based on the
ARM7, ARM9, Cortex-M3 and XSCALE families via
JTAG port. In addition internal and external FLASH
memory programming is supported.

A. Example application.

The example application is designed and developed as a
part of project for creating Web-based system for
measurement and control of electric power systems. It is
supposed to be connected to energy sensors via special
serial protocol and then store the collected data to provide
it on demand as Web service or other network service.
Creating this application was started from choosing
hardware platform. The one that best suits the project as a
price, availability and potential for fast development of
Web applications is EP9302 from Olimex. It is based on
ARM920T core that provide good working with Linux.
After some tests with this board bootloader, Linux
distribution and cross-development toolchain were chosen
(RedBoot, kernel 2.6.24, Emdebian distribution with its
ARM toolchain). This section presents steps for preparing
the bootscript for RebBoot, buildnig and loading the kernel,
creating root file system on USB drive, preparing the
development environment, and creating the actual user-
space application.

For the example application we have decided to build a
custom Linux kernel. That way it was possible to exclude
all unnecessary modules. The build process started with
obtaining the source tree (linux-2.6.32). Next, all required
patches have been applied. In the example application the
MMC/SD interface could be used for data logging, so we
have added MMC/SD support by obtaining the patch
linux-2.6.24-rc8_ep93xx_mmc.patch.gz [9], slightly
modified to match 2.6.32 kernel version.

$patch p1 < linux-2.6.32_mmc.patch

ANNUAL JOURNAL OF ELECTRONICS, 2011, ISSN 1313-1842

Then the kernel was configured with the help of make
menuconfig and builded with the emdebian cross-compiler.

$ make ARCH=arm CROSS_COMPILE=arm-linux- zImage
In the example application the kernel is loaded from http

server. It allows changing the configuration and integrated
module drivers without reconfiguring the board. First, IP
address (and eventually MAC address), subnet mask,
default gateway and default server should be configured.
Then the load command should be executed with options
showing: (-b) the memory location to save the image on the
board; (-m) transport protocol; (-h) server address; and the
name of the kernel image.

#load -b 0x800000 -m http -h 192.168.2.14 zImage_2.6.32
After loading the image into memory it can be executed

using exec command. This command (using the -c option)
can forward some options to the executable. In the case of
executing kernel, these options include: where is the root
files system; to use serial console on specific serial device;
IP configuration; serial port baudrate.

#exec -c “concole=/dev/ttyAM0 root=/dev/sda1 rootdelay=5”
For the example application the root file system is

created on USB flash drive using debootstrap. The main
packages are downloaded form the Emdebian Grip
distribution . Grip is based on light version of Squeeze with
as few functional changes as possible and highest level of
binary and functional compatibility. It is intended to be a
native build environment and cross runtime environment
with the ability to mix and match Emdebian and Debian
packages with minimal effort. The first stage of
bootstrapping is made on the host platform, providing the
appropriate architecture, foregn option, target directory to
download the packages and repository URL.

$debootstrap --arch=armel --foreign squeeze grip/
http://www.emdebian.org/grip/

After this step, the file system is successfully
downloaded, but needs to be configured. First, information
about proc file system should be added to the fstab. Then in
the dev/ folder at least two nodes should be created – for
console and for the serial port (which will be used by
console). And last (optional) add URL of the repository to
the apt configuration.

$echo "proc /proc proc none 0 0" >>etc/fstab
$mknod dev/console c 5 1
$mknod dev/ttyAM0 c 204 64
After these steps, the file systems is downloaded and

configured and is ready to be uploaded to the flash drive.
The second stage should be executed on the target

device. Using the RedBoot commands, the kernel image
should be loaded. After loading it must be executed, but
with special option init= to tell the kernel what to start in
init phase, because the root file system is still not ready.

'console=ttyAM0 root=/dev/sda1 init=/bin/sh rootdelay=10'
After this the system will boot-up staring shell. In this

shell the path to binary executables should be exported and
proc file system mounted. Then the second stage should be
started.

sh-3.2# /debootstrap/debootstrap --second-stage
After waiting a relatively long time, the system will be

installed and some adjustments to the configuration files
can be made (e.g. networking, inittab, passwords and
users). Then the system should be restarted omitting the

init= option. The newly booted system can be upgraded to
the up-to-date version using apt.

The actual user-space application starts two threads –
using POSIX pthread library. The first thread queries the
sensor on serial port using termios library, while the second
implements standalone Web service using gSOAP Web-
service toolkit. More information about this application is
presented in [4]. The application is created using Eclipse
CDT integrated development environment with GnuARM
plug-in and is built using arm toolchain from Emdebian.

V. CONCLUSIONS

The presented paper can be used as a reference manual
for creating embedded Linux applications from the very
start. It covers the selection of hardware, configuring the
bootloader and kernel/firmware, and creating the actual
applications with commonly used toolchains and
development environment. An example application is used
to demonstrate the efficiency of the presented concept.

Using Linux as embedded operating system provides the
developers with many ready of-the-shelf applications,
drivers, tools. It also takes the embedded applications one
step closer to the Web of Things concept, as the Linux
environment is best suited for networking and Web
services. Embedded Linux further enables multiple flexible
home and mobile applications that will be the essential part
of the future Internet society.

VI. ACKNOWLEDGMENTS

The presented work is supported by Technical
University of Sofia, project “102ни200-3/2010”, entitled
“Investigation of technologies for development of Web-
based systems for measurement and control of electric
power systems” and partly supported by project “BG
051PO001-3.3.04/13” of European social fund 2007-2013.

REFERENCES

[1] K. Yaghmour, J. Masters, G. Ben-Yossef, P. Gerum,
“Building Embedded Linux Systems”, O’Reilly Media 2008.
[2] Hallinan Christopher, “Embedded Linux primer : a practical
real-world approach”, Pearson Education 2011, ISBN-13:
978-0-137-01783-6.
[3] “Embedded Linux Best Practices,” white paper, Katalix
Systems, Dec. 2006.
[4] N. Kakanakov, G. Spasov, “Web enabled system for remote
energy management,” in Journal of Electronics, vol. 4, no.2, pp.
95- 98, 2010, ISSN 1313-1842, 2010.
[5] R. Stigge, “Embedded Linux Development with Debian for
ARM”, Philosys GmbH, Oct. 2007, http://www.philosys.de/
[6] ARM homepage: http://www.arm.com
[7] Olimex Ltd homepage: http://www.olimex.com/dev/
[8] Emdebian homepage: http://www.emdebian.org/
[9] Peter Ivanov's site: http://dev.ivanov.eu/
[10] Eclipse project: http://www.eclipse.org/cdt/
[11] Linux kernel homepage: http://www.kernel.org
[12] RedBoot User's Guide: http://ecos.sourceware.org/docs-
latest/redboot/redboot-guide.html
[13] DSNet V-Lab forum for EP9302: http://dsnet.tu-
plovdiv.bg/forums/viewforum.php?f=23

	Using GNU/Linux tools for creating ARM9-based embedded applications
	Nikolay Rumenov Kakanakov and Mitko Petrov Shopov

