
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Adaptation of Web service architecture in distributed embedded

systems

Nikolay Kakanakov, Grisha Spasov

Abstract: The paper discusses the possibility of adaptation of Web Services Architecture (WSA) in
distributed embedded systems. It provides a brief description of this architecture and a tool for creating
services in Java and C/C++. A three-tier client/server model of a distributed system for monitoring of
temperature and humidity is presented and techniques for adaptation of this model to the WSA are
proposed. The adaptation is made with Apache server and eSOAP toolkit. A comparison of efficiency and
ease of integration between three-tier client/server model and services-oriented model is made.

Key words: Distributed Embedded Systems, Web Service Integration, Client/Server Model, Remote
Monitoring and Control.

INTRODUCTION
Computer science is currently built on a foundation that largely assumes the

existence of a perfect infrastructure. That is why even a single failure can ruin the whole
systems. Among these complex systems are Distributed Embedded Systems (or
Networked Embedded Systems - NEST), composed of many different nodes in need to
communicate with each other. The tasks for these systems are dynamically assignable,
and require reliable and predictable performance even though the nodes are individually
unreliable. This approach is now feasible because Moore’s law continues to reduce cost of
computation and memory, new technologies are present for reducing size of the
controllers, and the adaptation of well-known business standards in embedded systems is
successful. Coordination, control and programming of embedded systems is currently an
unsolved problem [2, 6].

Figure 1. Technology and Innovation in Embedded Systems.

The technology and innovation in embedded systems now follows the line of progress
of distributed business systems as shown on Figure 1. The Web Services Architecture
(WSA) provides this reliability, scalability and flexibility needed for distributed embedded
systems.

The experiments in this paper are part of National Science Fund of Bulgaria project –
“ВУ-906”, 2005, entitled “Web Services and Data Integration in Distributed Automation
and Information Systems in Internet Environment”.

- IIIB.10-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Introducing Web Services Architecture (WSA)
The WSA combines the best aspects of component-based development and the

World Wide Web. According to [1] a service is: “a software system identified by a URI,
whose public interfaces and bindings are defined and described using XML. Its definition
can be discovered by other software systems. These systems may then interact with the
Web service in a manner prescribed by its definition, using XML based messages
conveyed by Internet protocols.”

Applications access web services via common Web protocols and data formats. The
most common used protocol for transferring data in the Internet is HTTP (Hypertext
Transfer Protocol) and it is the key transport protocol in the WSA. The universal schema in
the Internet that codes the data is XML (Extensible Mark-up Language). The current
structure of Internet is based on program-to-user interaction and the WSA is based on
program-to-program interaction [7, 8].

The WSA is based on some key standards: XML for data representation; SOAP for
accessing services; WSDL for describing services; UDDI – registering and discovery of
services [1, 7].

SOAP (Simple Object Access Protocol) is XML-based, lightweight protocol for data
exchange in a decentralized, distributed environment. SOAP request packets call methods
available on the SOAP server, and the server sends a response packet, structured in a
similar manner [1, 7].

WSDL (Web Services Description Language) is a XML grammar for specifying
properties of a Web Service, such as what it does, where it is located, and how to invoke
methods on a particular service. WSDL is an interface definition language similar to those
of CORBA and DCOM [1, 7].

UDDI (Universal Description, Discovery and Integration) is a group of web-based
registries that expose information about a business or other entity and its technical
interfaces (or API’s). By accessing any of the public UDDI Operator Sites, anyone can
search for information about web services that are made available by or on behalf of a
business. The information that a business can register includes several kinds of simple
data that help others determine the answers to the questions “who, what, where and how”
[1, 7, 8].

Figure 2. Web services. Components interaction.

The scenario of the interaction between the consumer and provider of the service is
shown on Figure 2. The consumer contacts the UDDI registry and finds the service
description (in WSDL). Using WSDL document consumer finds the location of the service
and “binds” to it. Then, using the interface from WSDL document, consumer generates
SOAP calls and receives SOAP responses [1, 7].

The complexity and verbosity of XML Web services protocols creates a whole new
set of design tradeoffs and issues for developing Web services applications for embedded
systems. Embedded systems rarely have enough memory and processing power to run a
Web services. On the other hand, current Web services implementations do not

- IIIB.10-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

adequately apply to the embedded processing [4, 5].
For solving this problem there are several possible techniques. One is the generation

of “light-weight” web services [5]. Another is to adapt WSA to the three-tier architecture as
it is described in the current paper.

Apache and Web services
Apache is one of the most popular web servers in the Internet. Apache is open

source, free of charge to use web server, which has modifications for most popular
operating systems – MacOS, Windows, Linux, UNIX, etc. It is built on a modular basis and
this makes it very scalable. You can add modules to support Java, Perl, and PHP, Python
and even web services and XML [11].

There are several different modules for Apache to add web services capabilities to it.
One possible toolkit to add web services capabilities to Apache web server is Axis. The
Apache Axis is an implementation of the SOAP W3C protocol for Java and C/C++ [11].

Another module is available from EXOR International (www.exorinternational.com).
This module works with eSOAP toolkit. The module includes a dynamic library for Apache
that works as a filter. This filter accepts requests from clients and passes them to the user
configured SOAP application. This module is used in realizing the system described in the
current paper [10].

The Embedded SOAP Software Component, eSOAP, is a SOAP reference
implementation that implements a Web Services interface for embedded devices. The
software consists of a C++ library that implements a SOAP engine based on the SOAP 1.1
specification. The memory footprint of the eSOAP engine is about 150KB. The eSOAP
core engine is written in 100% ANSI C++ and it is highly portable. It has been designed to
use STL (Standard Template Library) when available or an internal container library when
STL is not available. Exception handling has been avoided since this feature is usually not
available on embedded platforms [10].

The toolkit also provides a compiler for generating C++ stub and proxy classes based
on WSDL files and a Java library of interface classes for client development. The Java
library includes a SOAP client interface that can be executed from with a web browser. In
this way, developers can concentrate on the business logic of their SOAP applications and
start coding quickly [10].

Three-tier client/server model with Java transaction server and Apache
A model of distributed system for monitoring of temperature and humidity based on

three-tier client/server model is shown on Figure 3. On the data-tier there is a network of
embedded controllers. Every controller measures temperature and humidity in a particular
point. On the client-tier there is a PC with a connection to Internet and a web browser with
Java Applet capabilities. On the middle tier there is a Linux-based application server. The
application server consists of two parts. First part is Java program that polls the data from
the controller network and organize this data for statistics. Second part is an Apache web
server that provides measurement results and statistics in html documents [9].

The key benefits of this model include [9]:
- Security mechanism is concentrated in the middle tier. It is based on the security

of the Apache server. There is no need to adapt memory and calculation
consuming encryption algorithm in the embedded controllers.

- Data storage and organization of statistics is provided by the middle tier, which in
most cases has much more memory than the embedded controllers.

- Middle tier can organize data and services from big number of controllers in the
network and provide them as a single HTML document in response to the user.

- Middle tier can provide some reaction mechanism to the controller network, based
on the measured data.

- IIIB.10-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Figure 3. Three-tier model of distributed embedded system [9].

The described three-tier distributed system for monitoring of temperature and
humidity is developed and currently works in a laboratory in Technical University – branch
Plovdiv. It can be viewed on the following web address: http://temperature.tu-plovdiv.bg/.

Adaptation of WSA to the system for monitoring of temperature and humidity
To adapt an embedded system to the WSA it is needed to add XML parser and

SOAP engine to it (assuming that there are network capabilities and Web server). These
two programs are large (about 200KB) for a small system with just few hundreds of
kilobytes of memory. Additionally encapsulation of SOAP envelope and parsing the XML
messages is very time-consuming for embedded processors. There are some attempts for
optimization of XML parsers and SOAP engines [4, 5].

The optimization techniques are not always the right decision. Sometimes the goal is
re-using of the existing embedded hardware and software. This is possible by using server
that connects the network of controllers to the outside Internet.

In the three-tier model the application logic and security mechanism are provided by
the middle tier. In WSA application logic is broken into small units named services. In that
case it is straightforward to add web services capabilities exactly to the middle tier [3].

To a particular web service the middle-tier can be considered as a proxy object –
Figure 4. This object parses XML messages, encapsulates SOAP envelope and provides
endpoint for the service. It can be stand-alone server or integrated into existing Web
server [3].

Figure 4. Providing web services through Proxy Object.

The architecture is still three-tier and the middle tier is a proxy for the embedded
controllers to provide web services. The middle tier runs Apache web server which
provides HTTP protocol for communication and provides direct way for the client to access

- IIIB.10-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

the services. This is made by HTML document with Applets integrated inside.
The structure of the proposed architecture is shown on Figure 5. The current paper

focuses only on the middle tier and experiments are not made via Internet cloud.
The connection between middle tier and controllers is currently based on sockets but

it can be based on RPC calls as well.

Figure 5. Adaptation of WSA in distributed embedded systems.

The brief observation of the network traffic shows no visible difference between the
two systems. They both transfer packets with data part bellow 1KB in size. In that case
there is no difference in packet size distribution and network load. There is a flow of small
packets in short time intervals. The SOAP uses HTTP 1.1 which supports persistent
connections, so in the sequence of SOAP requests/responses there is only one TCP
connection establishment (three-way handshake).

The request-response times of Java-enabled system is about (9-11)ms and that of
SOAP-enabled system is about (16-18)ms. These times are calculated for the case of a
small LAN with just a few nodes, the Nagle algorithm and turned off delayed Acknowledge
of TCP.

In both cases an Applet client is used. The “AppletTest.class” uses SOAP and the
“my_test.class” uses Java-enabled server. Both Applets are almost the same size, but in
the SOAP-enabled system there is one-time download of “esoap_core.jar” file which is
about 58KB – Figure 6.

Figure 6. Extraction from web server access log.

The last row shows the actual request for the web service with the POST method.
The destination “/rpcrouter” refers to the endpoint of the web service.

The key differences are repositioned in the middle tier. In both cases there is Apache
installed. Java-enabled server uses about 50KB of RAM during work and this can increase
when there are many simultaneous connections. The SOAP-enabled system needs a
“mod_esoap.so” module to run with Apache. It is about 20KB in size. Service
implementation module is about 300K (“esoapserver.so”) in size and is placed in memory
as a shared object. So, the SOAP realization uses more RAM.

192.168.0.8 - - [02/May/2005:13:53:35 +0300] "GET /test/ HTTP/1.1" 200 922
192.168.0.8 - - [02/May/2005:13:53:40 +0300] "GET /test/my_test.class HTTP/1.1" 200 3419
192.168.0.8 - - [02/May/2005:13:53:40 +0300] "GET /test/esoap_core.jar HTTP/1.1" 200 59234
192.168.0.8 - - [02/May/2005:13:53:40 +0300] "GET /test/AppletTest.class HTTP/1.1" 200 4543
192.168.0.8 - - [02/May/2005:13:53:53 +0300] "POST /rpcrouter HTTP/1.0" 200 546

- IIIB.10-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

CONCLUSIONS AND FUTURE WORK
The comparison of the two presented models has led to the following conclusions:
• The size of the Java-enabled server is smaller than that of the SOAP-enabled
system. But the differences are not significant for a general purpose PC or server.
• Java-enabled system is applicable in specific implementations where small
memory footprint and small processor overhead is needed.
• SOAP-enabled system with adding just a little overhead provides all the benefits
of the WSA:

− The system is no more just an application. It is a service which can be easily
integrated in bigger systems.
− It provides public interface in WSDL, so it can be used by clients written in
different programming languages (VS.NET, Java, PHP, C/C++ etc.).
− It is dynamically discoverable through service registry such as UDDI.

The future work of this project can go in different direction. One is the integration of
some web service capabilities to the controllers. The other is deeper analysis of the
SOAP-enabled three-tier model. This includes long-term analysis of network traffic and
web server log; using of proxies and firewall; calculating processor overhead, etc.

REFERENCES
[1] Austin, D., A. Barbir, C. Ferris, S. Garg. Web services architecture requirements,

http://www.w3c.org/TR/wsa-reqs.
[2] Borriello, G., R. Want, Embedded Computation Meets the World Wide Web,

Communications of ACM, Vol. 43 №5, May 2000, pp. 59-66.
[3] Channabasavaiah, K., K.Holley, M. Edward, Jr. Tuggle, Migrating to a service-

oriented architecture, Part 1 (2003), http://www.ibm.com/developerworks/webservices/
library/ws-migratesoa/index.html.

[4] Davis, D., M. Parashar. Latency performance of SOAP implementations. In 2nd
IEEE International Symposium on Cluster Computing and the Grid, 2002, pp. 407-412,
ISBN: 0-7695-1582-7.

[5] Engelen, R., Code Generation Techniques for Developing Light-weight XML Web
Services for Embedded Devices, ACM SAC’04, March 14-17, 2004, Nicosia, Cyprus, pp.
854-861, ISBN:1-58113-812-1.

[6] Estrin, D., G. Borriello, R. Colwell, J. Fiddler, M. Horowitz, W. Kaiser, N. Leveson,
B. Liskov, P. Lucas, D. Maher, P. Mankiewich, R. Taylor, J. Waldo, Embedded,
Everywhere. A Research Agenda for Networked Systems of Embedded Computers, NAP
Washinton, D.C. 2001, ISBN 0-309-07568-8.

[7] Kreger H., “Web Services Conceptual Architecture (WSCA 1.0)”, IBM Software
Group, May 2001, www.redbooks.ibm.com.

[8] Stoilov T., K. Stoilova, Integration of Web Services in Internet, 18th International
Conference "SAER-2004", 24-26 September, St. Konstantin resort, Varna, Bulgaria.

[9] Spasov G., N. Kakanakov, N. Lupanov, Three-tier distributed applications,
Computer Science’2004, 6-8 Dec 2004, Technical University Sofia, Bulgaria, pp. 172-177.

[10] Embedded SOAP toolkit, http://www.embedding.net/eSOAP/.
[11] Web Services Project at Apache, http://www.apache.org/.
ABOUT THE AUTHORS
Nikolay Kakanakov, PhD student, Department of Computer Systems and

Technologies, Technical University, branch Plovdiv, Phone: +359 32 659758, Е-mail:
kakanak@tu-plovdiv.bg.

Assoc.Prof. Grisha Spasov, PhD, Department of Computer Systems and
Technologies, Technical University. Branch Plovdiv, Phone: +359 32 659576, Е-mail:
gvs@tu-plovdiv.bg.

- IIIB.10-6 -

