
ELECTRONICS’ 2006 20 – 22 September, Sozopol, BULGARIA

EVALUATING CONTROLLER NETWORK DATA EXTRACTING PROTOCOL
FOR EMBEDDED DEVICES

 Nikolay R. Kakanakov, Mitko P. Shopov

Department of Computer Systems and Technologies, Technical University of Sofia, branch
Plovdiv, 61 “St. Petersburg” Blvd., Plovdiv 4000, Bulgaria, phone: +359 32 659758, www:

http://net-lab.tu-plovdiv.bg/ , e-mail: {kakanak, mshopov}@tu-plovdiv.bg

Test-bed experiments of semi-customized application layer protocol for data extraction in
distributed embedded systems are presented. Test-bed network and configuration are built in
“Laboratory for Computer Networks and Distributed Systems” in Technical University,
branch Plovdiv. The presented experimental results provide a base data for evaluation the
protocol leaks and performance. Additionally, the experiments are executed on two different
embedded platforms, running different implementation of the protocol – in Java and C. It
allows separation of platform specific components in the experimental results. The
experiments are monitored and analyzed using specially built application. The results are
stored in XML files for further analyses.

Keywords: Distributed Embedded Systems, Remote Monitoring and Control.

1. INTRODUCTION
Over the recent years there is a trend for adaptation of emerging computer

technologies in Distributed Embedded Systems. The vendor specific standards are
replaced with popular open standards for communication between embedded devices
(TCP/IP, Ethernet, WiFi). The embedded communication is being integrated with
Internet paradigms and Internet-ready embedded devices appear on the market. The
popular enterprise technologies and protocols cannot be directly applied to
automation systems and home appliances. The primary recognized problems are the
resource limitation of the embedded devices and the need of fast response to changes
in the environment. A solution to these problems can be a semi-customized
application protocol for interaction with the embedded systems, built upon standard
communication stacks (TCP/IP). Such protocol should be a trade-off between
universal and application specific realizations. The fully-customized protocols will
hardly be adapted to different platforms and standard protocols are too resource
consuming to deploy on embedded devices [5, 7].

2. PROBLEM STATEMENT
As long as a new protocol is designed and implemented, it should be evaluated

and tested. This includes tests against the requirements form the environment and
evaluation of main characteristics of the protocol (packet’s size, packet distribution,
protocol delay). The paper presents test-bed experiments for evaluation of Controller
Network Data Extracting Protocol (CNDEP). The experimental data collected during
the test-bed will be used for:

ELECTRONICS’ 2006 20 – 22 September, Sozopol, BULGARIA

• addressing the leaks in the protocol implementation;
• evaluating the delay that the protocol carries in the communication;
• collecting values for further simulation analysis of more complex systems,

based on CNDEP communication.
2.1. Controller Network Data Extracting Protocol (CNDEP)
CNDEP is an asymmetric protocol used in Client/Server systems to "extract" data

from microcontrollers working in LAN. It works on the application layer of the
TCP/IP stack. As a transport protocol it uses UDP. An area where UDP is especially
useful is the client-server applications – this is the CNDEP base. The client sends a
short request to the server and expects a short reply back. Current implementation of
the protocol is supposed to work in Local Area Network and to be integrated in multi-
tier systems for home and office automation. The reasons for using UDP are: short
message exchange; fast communication; good reusability of communication channel;
service of devices in sensible time. The protocol implements a number of commands
– e.g., ‘Test’, ‘GetTemperature’, ‘GetHumidity’, ‘SetTemperatureOptions’,
‘SetHumidityOptions’ [2, 4].

2.2. Test-bed architecture and configuration
A test-bed experiments configuration typically consists of experimental

subsystem, monitoring subsystem and simulation-stimulation subsystem. The
experimental subsystem is the part which characteristics should be fetched. Thus, the
simulation-stimulation subsystem provides parameterized inputs to the experimental
subsystem and the monitoring subsystem collects the outputs [1, 6].

For executing the experiments an experimental network is built. It consists of
several embedded devices and monitoring stations – desktop PC and PDA,
interconnected in switched LAN. The architecture of the network for the test-bed is
presented on fig. 1. The embedded devices included in the experiments are DS TINI
from Dallas Semiconductors [9] and IPC@Chip SC12 from Beck IPC [8].

Figure 1: Experimental network.

The configuration of the system-under-test for the test-bed experiments is shown
on fig. 2. It is built to address the main requirements of the test-bed experiments,
including: network delay times, TCP/IP stack delay times and CNDEP delay times.
Experimental data is collected on a data capturing computer.

ELECTRONICS’ 2006 20 – 22 September, Sozopol, BULGARIA

Figure 2: Test-bed configuration

The data capturing computer acts as a CNDEP client and executes requests to
controllers under test and receives the responses. Thus, it provides platform for
simulation-stimulation subsystem and monitoring subsystem. They are implemented
together in a software tool, which tool allows choosing different experimental
scenarios and collects the results. The calculated delay, together with the request and
response types and corresponding controller info are stored in XML files. The tool
provides an interface for choosing the request type (CNDEP command), the number
of times for executing the request, and the interval between requests. The time
intervals are measured using “HighPerformanceTimer”, provided by the Windows
framework. It has accuracy of about 0.001ms.

2.3. Target embedded platforms
Target embedded platforms included in the test-bed are DS TINI from Dallas

Semiconductors [9] and IPC@Chip SC12 from Beck IPC [8]. On the embedded
platforms involved in the experiments runs the server side of CNDEP. For providing
the interaction of the device with the environment is used temperature and humidity
measurement using SHT71 intelligent sensor [10]. The DS TINI platform uses Java
virtual machine for running applications and IPC@Chip runs specific RTOS. In this
way the calculated delay times for the protocol are dependable on the platform
architecture. Thus, the results can be used for evaluation of the platform themselves.

3. EXPERIMENTAL RESULTS
The evaluation of the protocol implementation includes measuring the latency of

networking hardware, the latency in embedded devices for creating a socket and
reading/writing to it, and the delay of the protocol itself. All experiments are executed
101 times in relatively big intervals, for providing good statistical results for
approximation [1, 6]

3.1. Comparison of communication latencies of CNDEP implementation for
the two embedded platforms

ELECTRONICS’ 2006 20 – 22 September, Sozopol, BULGARIA

Experiments include four different CNDEP commands executed on the both
embedded platforms. The commands are ‘Test’, ‘GetTemperature’, ‘GetHumidity’,
‘SetTemperatureOptions’ [4].

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
seq num

de
la

y,
 m

s

 Test Get Temperature Get Humidity Set Temperature Options

Figure 3: Delay times for CNDEP commands for DS TINI platform.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
seq num

de
la

y,
 m

s

 Test Get Temperature Get Humidity Set Temperature Options

Figure 4: Delay times for CNDEP commands for IPC@Chip platform.

The command delay times for DS TINI are shown on fig. 3 and for IPC@Chip –
fig. 4. The presented results are for low resolution sensor measurement. ‘Test’
command only returns ‘OK’ response to the request without any other processing on
the embedded platform. The other commands demonstrate the Get and Set type of
communication. The two Get commands include the latency of the sensor

ELECTRONICS’ 2006 20 – 22 September, Sozopol, BULGARIA

measurement. The ‘GetHumidity’ forces the sensor to execute both temperature and
humidity measurement for calculating the humidity with temperature compensation.
3.2. Comparison of CNDEP for two platforms, for two different measurement
resolutions

For addressing the sensor measurement latency, experiments are executed for
high and low resolution measurement for two platforms (results are shown on fig. 5).
High resolution is 14bit for temperature (0.02%) and 12bit for humidity (0.03%). The
low resolution is 12bit temperature (0.07%) and 8bit humidity (0.5%). The minimum
latencies are respectively 210/55/11 ms for 14/12/8 bit measurements, as specified by
the vendor [10].

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

0 4 8 12 16 20 24 28 3
seq num

de
la

y,
 m

s

2

TINI HR TINI LR IPC HR IPC LR

Figure 5: Comparison of ‘GetTemperature’ command for both devices, high and low resolution

measurements (HR and LR).
Using low resolution, not only the sensor works faster, but the power

consumption is smaller. It is useful for real-time or power-saving applications,
without the need of strict accuracy. The minimum, maximum and average values of
three types of command, together with their deviation are shown on table 1.

Table 1
TEST GET SET command

controller min max avg ± σ min max avg ± σ min max avg ± σ
HR 10.95 14.5 13.4 ± 1.36 251.18 262.77 254.7 ± 0.17 11.89 16.41 14.1 ± 0.67 IPC@Chip LR - - - 96.66 122.21 102.4 ± 0.27 - - -
HR 17.38 21.59 19.1 ± 0.09 415.89 463.26 418.9 ± 0.45 51.16 57.08 52.8 ± 0.12 DS TINI LR - - - 218.27 286.81 242.1 ± 0.93 - - -

4. CONCLUSIONS
The results of the test-bed experiments show that CNDEP implementation is fast

and response times has no significant deviation from its mean value. Thus, CNDEP
communication shows to be predictable for the environment it is designed for – local

ELECTRONICS’ 2006 20 – 22 September, Sozopol, BULGARIA

network of controllers. The experiments also provide data for comparison between
communication latencies of the embedded platforms – DS TINI and IPC@Chip.

The CNDEP command latencies for both platforms can be compared to the
latencies of a simple UDP ‘echo’ server, provided in [3]. Thus, the latency of the
protocol can be separated form the delay of the communication media and latency of
the TCP/IP stacks. For IPC@Chip, the ‘Test’ command is executed for about 13.5ms,
the ‘SET’ – 14.1ms, and simple ‘echo’ – 9.3ms. The calculated latency of the
protocol is about 4.2ms. For DS TINI, the ‘Test’ command is executed for about
19.1ms, the ‘SET’ – 52.8ms, and simple ‘echo’ – 14.8ms. The calculated latency of
the protocol is about 4.3ms. The CNDEP ‘Test’ command shows that CNDEP
message parsing takes approximately the same time for both controllers. On the other
hand ‘SET’ commands have significant difference for the both controllers. This can
be explained by the need of context switching between Java virtual machine and
Native Interface for DS TINI.

5. FUTURE WORK
The test-bed architecture includes only two popular embedded platforms and

future work will be directed to implementation and evaluation the CNDEP for
additional platforms with different architectures. Another direction in the future work
is using the results of the test-bed for creating scenarios for simulation of the
CNDEP-based network of controllers for wired and wireless implementations.

6. ACKNOWLEDGEMENT
The presented work is supported by National Science Fund of Bulgaria project – “ВУ-

966/2005”, entitled “Web Services and Data Integration in Distributed Automation and Information
Systems in Internet Environment”, under the contract “ВУ-МИ-108/2005”.

7. REFERENCES
[1] Fortier, P., G. Desrochers, Modeling and Analysis of Local Area Networks, CRC Press,

1990.
[2] Holzmann, G., Design and Validation of Computer Protocols, Prentice Hall, 1991, ISBN: 0-

13-539925-4.
[3] Kakanakov, N., Experimental analysis of client/server applications in embedded systems,

Proc. ELECTRONICS-ET, Sozopol, September 2005, book 4, pp. 97-102, ISBN:954-438-520-7.
[4] Kakanakov, N., I. Stankov, M. Shopov, and G. Spasov, Controller Network Data Extracting

Protocol – design and implementation, Proc. CompSysTech’06, Veliko Tarnovo, June 2006, pp.
IIIA-14.1 – IIIA-14.6.

[5] Sridhar, T., Designing Embedded Communications Software, CMP Books, 2003, ISBN: 1-
578-20125-X.

[6] Stallings, W., High-Speed Networks and Internets, 2nd Ed, Prentice Hall, 2002, ISBN: 0-13-
032221-0.

[7] Youngblood, G. M., Smart Environments, Ch. 5: “Middleware”, pp. 101-127, 2004, ISBN:
0-471-54448-5.

[8] http://www.beck-ipc.com/ipc/ - IPC@Chip Homepage [July 2006].
[9] http://www.maxim-ic.com/products/tini/ - DS TINI Homepage [July 2006].
[10] http://www.sensirion.com/en/02_sensors/, Sensirion Inc., “Humidity Sensor SHT71”, [July

2006].

