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Test-bed experiments of semi-customized application layer protocol for data extraction in 
distributed embedded systems are presented. Test-bed network and configuration are built in 
“Laboratory for Computer Networks and Distributed Systems” in Technical University, 
branch Plovdiv. The presented experimental results provide a base data for evaluation the 
protocol leaks and performance. Additionally, the experiments are executed on two different 
embedded platforms, running different implementation of the protocol – in Java and C. It 
allows separation of platform specific components in the experimental results. The 
experiments are monitored and analyzed using specially built application. The results are 
stored in XML files for further analyses. 
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1. INTRODUCTION 
Over the recent years there is a trend for adaptation of emerging computer 

technologies in Distributed Embedded Systems. The vendor specific standards are 
replaced with popular open standards for communication between embedded devices 
(TCP/IP, Ethernet, WiFi). The embedded communication is being integrated with 
Internet paradigms and Internet-ready embedded devices appear on the market. The 
popular enterprise technologies and protocols cannot be directly applied to 
automation systems and home appliances. The primary recognized problems are the 
resource limitation of the embedded devices and the need of fast response to changes 
in the environment. A solution to these problems can be a semi-customized 
application protocol for interaction with the embedded systems, built upon standard 
communication stacks (TCP/IP). Such protocol should be a trade-off between 
universal and application specific realizations. The fully-customized protocols will 
hardly be adapted to different platforms and standard protocols are too resource 
consuming to deploy on embedded devices [5, 7]. 

2. PROBLEM STATEMENT 
As long as a new protocol is designed and implemented, it should be evaluated 

and tested. This includes tests against the requirements form the environment and 
evaluation of main characteristics of the protocol (packet’s size, packet distribution, 
protocol delay). The paper presents test-bed experiments for evaluation of Controller 
Network Data Extracting Protocol (CNDEP). The experimental data collected during 
the test-bed will be used for: 
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• addressing the leaks in the protocol implementation; 
• evaluating the delay that the protocol carries in the communication; 
• collecting values for further simulation analysis of more complex systems, 

based on CNDEP communication.  
2.1. Controller Network Data Extracting Protocol (CNDEP) 
CNDEP is an asymmetric protocol used in Client/Server systems to "extract" data 

from microcontrollers working in LAN. It works on the application layer of the 
TCP/IP stack. As a transport protocol it uses UDP. An area where UDP is especially 
useful is the client-server applications – this is the CNDEP base. The client sends a 
short request to the server and expects a short reply back. Current implementation of 
the protocol is supposed to work in Local Area Network and to be integrated in multi-
tier systems for home and office automation. The reasons for using UDP are: short 
message exchange; fast communication; good reusability of communication channel; 
service of devices in sensible time. The protocol implements a number of commands 
– e.g., ‘Test’, ‘GetTemperature’, ‘GetHumidity’, ‘SetTemperatureOptions’, 
‘SetHumidityOptions’ [2, 4]. 

2.2. Test-bed architecture and configuration 
A test-bed experiments configuration typically consists of experimental 

subsystem, monitoring subsystem and simulation-stimulation subsystem. The 
experimental subsystem is the part which characteristics should be fetched. Thus, the 
simulation-stimulation subsystem provides parameterized inputs to the experimental 
subsystem and the monitoring subsystem collects the outputs [1, 6]. 

For executing the experiments an experimental network is built. It consists of 
several embedded devices and monitoring stations – desktop PC and PDA, 
interconnected in switched LAN. The architecture of the network for the test-bed is 
presented on fig. 1. The embedded devices included in the experiments are DS TINI 
from Dallas Semiconductors [9] and IPC@Chip SC12 from Beck IPC [8]. 

 
Figure 1: Experimental network. 

The configuration of the system-under-test for the test-bed experiments is shown 
on fig. 2. It is built to address the main requirements of the test-bed experiments, 
including: network delay times, TCP/IP stack delay times and CNDEP delay times. 
Experimental data is collected on a data capturing computer. 
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Figure 2: Test-bed configuration 

The data capturing computer acts as a CNDEP client and executes requests to 
controllers under test and receives the responses. Thus, it provides platform for 
simulation-stimulation subsystem and monitoring subsystem. They are implemented 
together in a software tool, which tool allows choosing different experimental 
scenarios and collects the results. The calculated delay, together with the request and 
response types and corresponding controller info are stored in XML files. The tool 
provides an interface for choosing the request type (CNDEP command), the number 
of times for executing the request, and the interval between requests. The time 
intervals are measured using “HighPerformanceTimer”, provided by the Windows 
framework. It has accuracy of about 0.001ms. 

2.3. Target embedded platforms 
Target embedded platforms included in the test-bed are DS TINI from Dallas 

Semiconductors [9] and IPC@Chip SC12 from Beck IPC [8]. On the embedded 
platforms involved in the experiments runs the server side of CNDEP. For providing 
the interaction of the device with the environment is used temperature and humidity 
measurement using SHT71 intelligent sensor [10]. The DS TINI platform uses Java 
virtual machine for running applications and IPC@Chip runs specific RTOS. In this 
way the calculated delay times for the protocol are dependable on the platform 
architecture. Thus, the results can be used for evaluation of the platform themselves. 

3. EXPERIMENTAL RESULTS 
The evaluation of the protocol implementation includes measuring the latency of 

networking hardware, the latency in embedded devices for creating a socket and 
reading/writing to it, and the delay of the protocol itself. All experiments are executed 
101 times in relatively big intervals, for providing good statistical results for 
approximation [1, 6] 

3.1. Comparison of communication latencies of CNDEP implementation for 
the two embedded platforms 
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Experiments include four different CNDEP commands executed on the both 
embedded platforms. The commands are ‘Test’, ‘GetTemperature’, ‘GetHumidity’, 
‘SetTemperatureOptions’ [4]. 
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Figure 3: Delay times for CNDEP commands for DS TINI platform. 
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Figure 4: Delay times for CNDEP commands for IPC@Chip platform. 

The command delay times for DS TINI are shown on fig. 3 and for IPC@Chip – 
fig. 4. The presented results are for low resolution sensor measurement. ‘Test’ 
command only returns ‘OK’ response to the request without any other processing on 
the embedded platform. The other commands demonstrate the Get and Set type of 
communication. The two Get commands include the latency of the sensor 
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measurement. The ‘GetHumidity’ forces the sensor to execute both temperature and 
humidity measurement for calculating the humidity with temperature compensation. 
3.2. Comparison of CNDEP for two platforms, for two different measurement 
resolutions 

For addressing the sensor measurement latency, experiments are executed for 
high and low resolution measurement for two platforms (results are shown on fig. 5). 
High resolution is 14bit for temperature (0.02%) and 12bit for humidity (0.03%). The 
low resolution is 12bit temperature (0.07%) and 8bit humidity (0.5%). The minimum 
latencies are respectively 210/55/11 ms for 14/12/8 bit measurements, as specified by 
the vendor [10].  
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Figure 5: Comparison of ‘GetTemperature’ command for both devices, high and low resolution 

measurements (HR and LR). 
Using low resolution, not only the sensor works faster, but the power 

consumption is smaller. It is useful for real-time or power-saving applications, 
without the need of strict accuracy. The minimum, maximum and average values of 
three types of command, together with their deviation are shown on table 1.  

Table 1 
TEST GET SET command 

controller               min max avg ± σ min max avg ± σ min max avg ± σ 
HR 10.95 14.5 13.4 ± 1.36 251.18 262.77 254.7 ± 0.17 11.89 16.41 14.1 ± 0.67 IPC@Chip LR - - - 96.66 122.21 102.4 ± 0.27 - - - 
HR 17.38 21.59 19.1 ± 0.09 415.89 463.26 418.9 ± 0.45 51.16 57.08 52.8 ± 0.12 DS TINI LR - - - 218.27 286.81 242.1 ± 0.93 - - - 

4. CONCLUSIONS  
The results of the test-bed experiments show that CNDEP implementation is fast 

and response times has no significant deviation from its mean value. Thus, CNDEP 
communication shows to be predictable for the environment it is designed for – local 
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network of controllers. The experiments also provide data for comparison between 
communication latencies of the embedded platforms – DS TINI and IPC@Chip. 

The CNDEP command latencies for both platforms can be compared to the 
latencies of a simple UDP ‘echo’ server, provided in [3]. Thus, the latency of the 
protocol can be separated form the delay of the communication media and latency of 
the TCP/IP stacks. For IPC@Chip, the ‘Test’ command is executed for about 13.5ms, 
the ‘SET’ – 14.1ms, and simple ‘echo’ – 9.3ms. The calculated latency of the 
protocol is about 4.2ms. For DS TINI, the ‘Test’ command is executed for about 
19.1ms, the ‘SET’ – 52.8ms, and simple ‘echo’ – 14.8ms. The calculated latency of 
the protocol is about 4.3ms. The CNDEP ‘Test’ command shows that CNDEP 
message parsing takes approximately the same time for both controllers. On the other 
hand ‘SET’ commands have significant difference for the both controllers. This can 
be explained by the need of context switching between Java virtual machine and 
Native Interface for DS TINI. 

5. FUTURE WORK 
The test-bed architecture includes only two popular embedded platforms and 

future work will be directed to implementation and evaluation the CNDEP for 
additional platforms with different architectures. Another direction in the future work 
is using the results of the test-bed for creating scenarios for simulation of the 
CNDEP-based network of controllers for wired and wireless implementations. 
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