
International Conference on Computer Systems and Technologies - CompSysTech’06

Distributed Automation System based on Java and Web Services

Nikolay Kakanakov, Mitko Shopov, Grisha Spasov

Abstract: The paper presents the implementation of a model for Distributed Automation Systems

which is experimentally built in the laboratory for Distributed Systems and Computer Networks (http://net-
lab.tu-plovdiv.bg/). It discusses the N-tier model and its integration to the filed of distributed automation. The
implementation of service-oriented middleware for interaction between tiers in the model is proposed. The
system is based on enterprise web portal technology for the realization of presentation tier and web services
for interconnection between middle tiers. The implementation is flexible and scalable, by means of using
open and popular technologies for enterprise application development and integration. The main aspect of
presented system is spreading the work of applications for distributed automation over large distances. In the
paper the distribution of automation services – lookup and registration (dynamic UDDI) and program-to-
program interaction (SOAP) are discussed. The implemented system can be applied to Distributed
Automation Systems and makes the integration of automation and business logic of an enterprise feasible.

Key words: Distributed Automation, N-tier Models, SOA, Web Services.

INTRODUCTION
Design and development of Distributed Automation Systems (DAS) goes in a new

direction over the past few years – towards standardization, openness and integration with
other business entities. High-level programming languages, component-based platforms,
Internet technology, and standardized communication interfaces, all influence the
development of today’s DAS [4, 5].

Following this trend of progress, adaptation of enterprise application architecture to
the field of automation is now feasible. Many organizations work on developing
middleware technologies for Distributed Automation. An interesting solution using the
latest technologies is the Web Services Architecture (WSA) – so called “middleware for
middleware”. It is believed that WSA has the potential to spread automation systems over
Wide Area Networks [4, 7, 9, 10].

The presented paper discusses a model for integration of enterprise technology and
distributed automation. The implementation of service-oriented middleware for interaction
between tiers in N-tier architecture for DAS is proposed in the paper [8].

Multi-tier approach
Multi-tier architectures provide many benefits over the traditional client/server

architectures [3, 10, 11]:
• Installing and deploying the user interface is virtually instantaneous - only the Web

interface in the middle tier needs to be updated.
• Without a "thick" client interface, it is easier to deploy, maintain, and modify

applications - no matter where the client is located.
• Because the application itself is server-based, users always access the most up-

to-date version.
These benefits explain the growing popularity of the multi-tier architecture, and why

almost every client/server application provider has retooled or is retooling to support Web-
based clients [3, 10, 11].

The integration between tiers is by means of a middleware technology. All
middleware technologies have the same problems and aims – high performance, flexibility,
interoperability, scalability and application-to-application interaction. The most promising
middleware nowadays is WSA. Its popularity derives from its basic features [3, 10]:

• Ubiquitous infrastructure – they operate over standard TCP/IP networks and use
ubiquitous HTTP/SMTP for transport.

International Conference on Computer Systems and Technologies - CompSysTech’06

• Proven approaches – they use both message-oriented and RPC-based interaction
which makes them flexible.

• XML – they do not need specific IDL for describing the interfaces and the data
entities are self-describing.

• Business standards – Business-to-Business interaction is by means of standard
documents and processes.

The most important strength of WSA is that it accommodates diversity and
heterogeneity, not only in platforms, but also in middleware systems.

Enterprise portal technology
Spreading of enterprise resources over large distances, together with complexity and

expensiveness of modern software, has motivated many companies to invest in enterprise
portals as a mechanism by which they can manage information in a cohesive and
structured fashion. Among the benefits of using enterprise portals are: they provide a
single point of entry for different type of clients; portals can access Web services
transparently from any device in virtually any location; they provide the ability to integrate
disparate systems and leverage the functionality provided by those systems. Portals have
so many advantages, that they have become a standard for Web application delivery [14].

APPLICATION OF N-TIER MODEL FOR DEVELOPING DISTRIBUTED
AUTOMATION SYSTEMS USING JAVA AND WEB SERVICES

The implemented system is based on N-tier model for distributed automation [8]. This
model generally consists of four tiers which are separated in their functionality and
administration (figure 1).

Figure 1: N-tier model for distributed automation.

The functions of the tiers are as follows:
• Client tier – It works on the top of the model. The clients request services from the

system using regular Internet browser or via web services. Different responses
can be constructed depending on the client’s platform (PC, PDA, cellphone).

• Presentation tier – It is responsible for handling the requests and forming the
responses. The requests are analyzed and dispatched to the appropriate service
on the next tier. The server working on this tier is called the enterprise Web Portal
and is based on the portal technology.

• Services tier – On this tier the main functionality of the model is placed. The
different services work on different servers, so failure of a single server affects
only the corresponding service. This modular approach increases the flexibility
and reliability of the system.

• Data tier – the role of the data tier is to produce and/or store data. It depends on
the corresponding upper tier server. In case of data logging service it can be a
Database. In case of automation services – a controller network.

The format of the messages exchanged between individual tiers is chosen for best
performance, universality, and scalability. Clients interact with the Portal via HTTP – a

International Conference on Computer Systems and Technologies - CompSysTech’06

HTML documents or a SOAP message. The service tier and the data tier are
interconnected via standard (JDBC, ODBC) or custom protocols (CNDEP - Controller
Network Data Extracting Protocol [12]). The Presentation and the Service tiers
communicate using web services, as it is described in the following section.

Service Oriented Middleware for DAS
The interconnection between the Presentation and the Service tier is the backbone of

the system – its middleware. The middleware technology chosen is based on web services
because of their ability for application-to-application interaction. The portal first locates the
web services provided by the service tier and then uses them in proper order and
combination to achieve the result issued by the client.

Every server from the Service tier provides one or more web services according to its
functions and publishes them in central directory. The type and number of the provided
services for every server depends on its role. It can provide common services like: logging,
accounting, grouping and/or structuring the results of other services; or real automation
services like fetching data from sensors or sending commands to actuators, working on
the Data tier. In this case provided services are based on functions of controllers in
corresponding controller network.

A similar Remote Service Architecture is proposed by N. Jazdi in [5]. The main idea
of the paper is to present the functions of embedded devices as services on a gateway
server.

Localization Services
As documented in [6], there are two general ways for localization of remote services.

The first one is to build up a central directory, in which any relevant information is stored.
The information can be directly requested from the directory by a client. The other
possibility is to carry out a Peer-to-Peer (P2P) search, that is to say, you prepare a current
image of resources by a live search.

Usually, P2P networks do not have any fixed topology and as a result are self-
organized. The basic idea behind them is that every peer knows its neighbor and
consequently the neighbor's neighbor and so on. Therefore, a failure of one peer would
not cause a failure of the whole network [6].

In the central directory approach, a separate server is used to store information about
available services. Clients can retrieve information from the server at any time. Therefore,
the service provider has to register its information to the server, before it can be used by
the clients. Popular implementations of central directory are Jini, Universal Plug and Play
(UPnP), and Universal Description, Discovery, and Implementation (UDDI) [1, 6].

In the current paper, a central directory approach – UDDI, is chosen, as long as it is a
part of the WSA specification. It defines how to interact with a registry and the format of
the entries in it. Interactions with the registry are of two types: registration and lookup.
There are two types of UDDI registries: public and private. Public ones are accessible to
everyone and play the role of open search engines for Web services. Private ones are
those that enterprises create for their private use. For obvious reasons, industrial strength
Web service implementations are to be based on private repositories. The use of dynamic
binding between client application and service factory is a double edge sword. If the
dynamic binding is used simply to determine the location of a well defined service, it is
indeed a useful feature. Any other form of dynamic binding will make it almost impossible
to develop real applications [1].

Sample Implementation
In this section a sample implementation is presented. The architecture of the system

is shown on figure 2. It consists of a UDDI register, transaction servers (TS) and a web
portal, repositioned on separate machines. The transaction servers are deployed on
Apache Tomcat 5.5.14 and for the UDDI register a Microsoft UDDI Services is used. There

International Conference on Computer Systems and Technologies - CompSysTech’06

are two measurement services and a calculation service deployed (see figure 4). All of the
services are accessed from the web portal. The calculation service also access
measurement services to collect data and perform a function over them (average in
current implementation). A well defined web services are used and the UDDI register is
used only to determine their location. Data producer components for the measurement
services are controller networks (figure 2).

Figure 2: The architecture of implemented system.

The web portal provides a single point of entry for clients. It is built up from the
following components (figure 2): presentation component – a Java Server Page (JSP) and
a binding component – a Java Bean, used to transparently locate and call the right web
service. A fragment from the JSP page that figures out the integration of these two
components is shown on figure 3.

Figure 3: Invocation of services in JSP.

<JSP:useBean id="ts" class="WSClients.TsClient" />
Average Temperature: <JSP:getProperty name="ts" property="temperature" />
Average Humidity: <JSP:getProperty name="ts" property="humidity" />
Location: <JSP:getProperty name="ts" property="locations"/>

A fragment from a WSDL file describing the interface of a temperature measurement
service is shown on figure 4. The format of request and response messages can be seen.

Figure 4: Service interface description from WSDL.

<!--WSDL created by Apache Axis version: 1.3 -->
<wsdl:message name="getTemperatureRequest">
 <wsdl:part name="in0" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="getTemperatureResponse">
 <wsdl:part name="getTemperatureReturn" type="soapenc:float"/>
</wsdl:message>

The data entities trasfered between the portal and transaction server and the service
functions are enveloped in SOAP. The SOAP transport chosen is HTTP. This allows
distribution over networks separated by firewalls. The encapsulation of SOAP message in
HTTP body is exposed on figure 5a (Request) and figure 5b (Response).

The Request consists of addressing the getTemperature web service and calling its
function “Average”. This function contacts all registered measurment services for a
particular location and returns the arithmetic mean of their responses (assuming the
responses are float numbers representing temperature). The value data in the Response
is not XML encoded because it is of a simple data type – float.

International Conference on Computer Systems and Technologies - CompSysTech’06

Figure 5a: SOAP request enveloped in HTTP POST.

Figure 5b: SOAP reply enveloped in HTTP.

CONCLUSIONS AND FUTURE WORK
The implemented system is based on multi-tier architecture which makes it very

flexible and scalable. The tiers are functionally separated for increasing security and
reliability. Administration or maintenance of a server on a particular tier did not affect the
other tiers. Component approach in designing allows interoperability and reusability.

The proposed interconnection middleware between Presentation and Service tiers is
service-oriented. This allows the system to spread over wide area networks (by means of
VPNs). In that way the service tier is distributed over large distances, which is applicable
for corporate automation businesses.

Popular and standard technologies are used for implementation of every tier: on the
Client tier is Web browser; on the Presentation tier is the portal technology; on the Service
tier – web services. Only on the Data tier, where the real automation takes place, there are
custom protocols for communication with controllers.

The paper presents the implementation of a model for Distributed Automation
Systems which is experimentally built in the laboratory for Distributed Systems and
Computer Networks [13]. The future work includes the experimental analysis of the
system, evaluation of request/response times, estimation of the effectiveness in a function
of the server or network load. The other direction for evolution of the model is applying
web services architecture to the Data tier – directly to the embedded devices. [2, 4].

International Conference on Computer Systems and Technologies - CompSysTech’06

ACKNOWLEDGEMENTS
The presented work is supported by National Science Fund of Bulgaria project – “ВУ-

966/2005”, entitled “Web Services and Data Integration in Distributed Automation and
Information Systems in Internet Environment”, under the contract “ВУ-МИ-108/2005”.

REFERENCES
[1] Alonso, G., Myths around Web Services. IEEE Data Engineering Bulletin, Volume

25, number 4, 2002.
[2] Engelen, R. van, Code Generation Techniques for Developing Light-weight XML

Web Services for Embedded Devices, ACM SAC’04, March 14-17, 2004, Nicosia, Cyprus,
pp. 854-861, ISBN:1-58113-812-1.

[3] Fowler, M., Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 1st Ed., 5 Nov. 2002, ISBN: 0-321-12742-0.

[4] Jammes, F., H. Smit. Service-Oriented Paradigms in Industrial Automation,
Industrial Informatics, IEEE Transactions on Volume 1, Issue 1, Feb. 2005 pp. 62 – 70.

[5] Jazdi, N., Component-based and Distributed Web Application for Embedded
Systems, International Conference on Intelligent Agents, Web Technology and Internet
Commerce, 9-11 July 2001, Las Vegas, USA.

[6] Jazdi, N., J. Konnertz. Localization of distributed internet ready automation
devices. International Conference on Intelligent Agents, Web Technology and Internet
Commerce, 12-14 February 2003, Vienna, Austria.

[7] Kakanakov, N., G. Spasov, Adaptation of Web service architecture in distributed
embedded systems, Proceedings on the International Conference – CompSysTech‘05, pp.
IIIB.10-1 – IIIB.10-6, 16-17 June 2005.

[8] Kakanakov, N., M. Shopov, G. Spasov, A New Web-based Multi-tier Model for
Distributed Automation Systems, Journal “Information Technology and Control”, Year IV,
2006 (in press).

[9] Topp, U., P. Müller. Web based service for embedded devices. Lecture Notes in
Computer Science, Volume 2593 / 2003, pp. 141 – 153, ISSN: 0302-9743.

[10] Vinoski, S. "Where is Middleware?" IEEE Internet Computing, March/April 2002,
vol. 6, no. 2, pp. 83-85.

[11] Youngblood, G. M., Smart Environments, Ch. 5: “Middleware”, pp. 101-127,
2004., ISBN: 0-471-54448-5.

[12] http://net-lab.tu-plovdiv.bg/CNDEP/ - Controller Network Data Extracting protocol.
[13] http://net-lab.tu-plovdiv.bg/ - Virtual Laboratory of Computer Networks and

Distributed Systems.
[14] http://portals.apache.org/ - The homepage of the Apache portals project.

ABOUT THE AUTHORS
Nikolay Kakanakov, PhD Student, Department of Computer Systems and

Technologies, Technical University of Sofia, branch Plovdiv, Phone: +358 32 659 758, e-
mail: kakanak@tu-plovdiv.bg.

Mitko Shopov, BSc graduate student, Department of Computer Systems and
Technologies, Technical University of Sofia, branch Plovdiv, Phone: +358 32 659 758, e-
mail: mshopov@tu-plovdiv.bg.

Assoc. Prof. Grisha Spasov, PhD, Department of Computer Systems and
Technologies, Technical University of Sofia, branch Plovdiv, Phone: +358 32 659 724, e-
mail: gvs@tu-plovdiv.bg.

http://net-lab.tu-plovdiv.bg/CNDEP/

	INTRODUCTION
	Multi-tier approach
	Enterprise portal technology
	APPLICATION OF N-TIER MODEL FOR DEVELOPING DISTRIBUTED AUTOMATION SYSTEMS USING JAVA AND WEB SERVICES
	Service Oriented Middleware for DAS
	Localization Services
	Sample Implementation
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	ABOUT THE AUTHORS

