
DISTRIBUTED MEASUREMENT SYSTEM BASED ON JAVA 
AND WEB TECHNOLOGIES 

M. Shopov,   G. Spasov 

Technical University of Sofia, branch Plovdiv, Faculty of Electronics and 
Automation, 61 St. Petersburg Blvd., Plovdiv, {mshopov, gvs}@tu-plovdiv.bg 

Abstract.  The paper discusses the design and implementation of a system 
for distributed measurement. An adaptation of some of the well-proven 
architecture models and their applicability in distributed measurement is 
presented. The system’s implementation presented is based on open and 
standardized approaches – Java programming language, standard 
communication interfaces, and Web technologies. The measurement 
component in the system is represented by a network of web-enabled 
microcontrollers with temperature and humidity sensors.  

Keywords: Distributed measurement, Java technologies, Three-tier model, 
Web technologies. 

INTRODUCTION 
Recent years, with the progress in computer networks, more and more people 

and organizations have access to the global network - Internet and the services it 
offers. Besides, the advances in information systems have emerged new technologies 
like e-learning, e-business, e-government in different areas of society (medicine, 
industry, education, etc.). These new technologies are now being transferred toward 
the field of distributed measurement and automation [9]. 

A trend from the recent years is to migrate away from proprietary hardware 
and software platforms for distributed measurement systems (DMS) in favor of open 
and standardized approaches. High-level programming languages, object-oriented 
platforms, Internet technology, and standardized communication interfaces, all 
influence the development of today’s DMS [5, 6]. Additionally, rapidly advancing 
hardware, provide the market with a plenty of new embedded devices with integrated 
TCP/IP stack, embedded web server and continuously increasing processing power 
[1]. This gives the designers of distributed measurement systems the ability to put 
into practice some of the well-proven architecture models from distributed desktop 
systems. 

This paper describes the design and implementation of a system for distributed 
measurement that uses popular client-server architectures, Java and Internet 
technologies. The design is based on three-tier architecture model [2], with the focus 
put on the middle tier. The implementation of the system is based on Java Server 
Pages (JSP) technology [11]. 



MODELS FOR DISTRIBUTED MEASUREMENT 
As documented in [9] there are three major models of systems for distributed 

measurement and automation. These models are derived from some of the well-
proven architecture models for business systems. However, they have some specific 
characteristics that reflect the limited resources available and the increased demand 
for data actuality. These models are [9]: 

• Client/Server systems, based on custom communication protocol. Although 
cheap for manufacturing, these systems are based on proprietary technologies. 
This limits their freely distribution and makes them hard to extend and difficult 
to integrate in complex systems. An improvement of such systems is to use 
Applets or Active-X controls at the client side, thus unifying the user interface. 

•  CGI based distributed embedded systems. Such systems have additional 
requirement to microcontrollers – Network interface, TCP/IP stack and 
embedded Web server. This is no more a problem, since embedded systems 
that fulfill these requirements are widely available on the market today [1]. 

• Three-tier Client/Server architecture. Such systems are derived from the 
popular three-tier client server architecture – user interface on the front-end 
tier, business logic on the middle tier, and database on the back-end tier. Here, 
the back-end tier is replaced with controllers’ network. 
Fortino, et al. in [3] have proposed patterns for distributed measurements. A 

Java applet is used at client interface and a Java-based server at the middle tier. 
Communication with the measurement devices is based on sockets and more abstract 
RMI mechanism. Shortcomings of this approach are the need for Java-enabled 
browser that limits the number of supported clients and additional communication 
channel opened (additional port) that can be blocked by firewalls or NAT services 
deployed along the path. 

In [7] the authors have presented the use of Common Gateway Interface (CGI) 
for web-based distributed embedded systems. It uses the CGI integrated in the real-
time operation systems (RTOS) of the embedded device. Thus, on every client’s 
request CGI process returns the measured temperature and humidity. In [8] the 
system is expanded to three-tier model with addition of Java-enabled web server.  

The authors of [5] in their research have proposed another system for 
distributed measurements. It uses Java language for better abstraction and code 
reusability, three-tier architecture and TCP/IP for flexibility and extensibility. Again, 
a Java applet is used as user interface. 

In a closely related work, Jazdi in [4] has proposed a model for adapting Web 
technologies in industrial automation. In this model, the functions of embedded 
devices are presented as services on the middle-tier server, called “Remote Service 
Server”. Embedded devices form the data source. The paper suggests the use of 
component-based design and standard interfaces.  



Multi-tier architectures provide many benefits over traditional client/server 
architectures [2]:  

• Installing and deploying the user interface is virtually instantaneous - only the 
Web interface in the middle tier needs to be updated. 

• Using "thin" client interface, it is easier to deploy, maintain, and modify 
applications - no matter where the client is located. 

• Because the application itself is server-based, users always access the most up-
to-date version. 
These benefits explain the growing popularity of the multi-tier architecture, 

and Web-based clients.  

DISTRIBUTED MEASUREMENT SYSTEM BASED ON JAVA AND WEB 
TECHNOLOGIES 

The design of a modern, web-based distributed measurement systems have to 
be carried out in accordance with well-proven architecture models, allowing the 
system to benefit from various available technologies, thus giving it added flexibility 
and scalability. It has to be highly abstract, easily extensible and user-friendly. These 
characteristics have motivated the design of the system for distributed measurement, 
based on three-tier architecture, Java programming language and Web technologies. 

The system architecture is shown on figure 1. From the view point of the three-
tier architecture, it consists of standard Web browsers located at the client tier that 
provides an interface to other applications or operators; Web/application server 
located in the application tier that realize presentation and application functions; and 
data producer components – controller networks and database servers – located in 
data tier. 

 

Figure 1. Architecture of a Web-based, three-tier system for distributed measurement. 

A client of the system can be any device with a standard internet browser (e.g. 
PC, Laptop, PDA, and Cellphone – figure 1). Because the interaction with the system 
is based on exchange of standard HTTP request/response pairs, there is no need for 
extra plug-ins, thus the client is kept as thin as possible. 



Most of the functionality of the system is concentrated at the application tier. It 
consists of a web/application server (figure 1) that has two key tasks – presentation 
and application. The popular Model-View-Controller architecture (MVC) [2] is used. 
The model is a non-visual object that contains all data and behavior and is concerned 
with business policies and data extraction. In our case, the model functions are 
extracting measurement data from controllers’ network and interactions with 
databases. Two different objects (Measurement Bean and DB Access Bean – figure 
1) are responsible for the two tasks.  

The view represents the display of the model in the user interface. In our case, 
the view is an HTML/WML page rendered with information from the model. It is 
only responsible for displaying of information; any changes to the information are 
handled by the controller. The controller takes user input, manipulates the model, and 
causes the view to update appropriately. In this way user interface is a combination of 
the view and the controller.  

The data tier plays the role of data producer component. It incorporates two 
types of data sources – controllers’ network and database. The controllers’ network 
consists of web-enabled microcontrollers with attached sensors. Web-enabled 
microcontrollers have an Ethernet adapter, embedded TCP/IP stack, and embedded 
web server. For extracting of sensors’ data various TCP/IP application layer protocols 
can be used (e.g. CNDEP – Controller Network Extracting Protocol [10]). The 
controllers’ network is a producer of real-time measurement data. On the other hand, 
a database is used for collecting of logging and statistical information. 

Next section describes a sample implementation of a distributed system for 
measurement of temperature and humidity. This system is implemented in the Virtual 
laboratory of computer networks and distributed systems [12] and is accessible at 
http://net-lab.tu-plovdiv.bg/temperature/. 

Implementation of a Distributed System for Temperature and Humidity 
Measurements 

An application of the architecture from figure 1 has been developed for 
measurement of temperature and humidity. Most of the implementation issues 
concern the middle tier. Its implementation is based on Sun Microsystems’s Java 
Server Page (JSP) technology [11]. 

The JSP technology uses the MVC architecture. Controller functions are 
handled by a servlet (figure 1). It processes all HTTP requests and determines the 
appropriate object from the model and appropriate view. The servlet also offers 
authentication and validation services. 

The model consists of two components – Measurement Bean and DB Access 
Bean (figure 1). The Measurement Bean component is a permanent object for the 
application. It is instantiated once at the first request received. Its functions are to 
contact the remote controllers that measure temperature and humidity and to collect 



these values in internal variables. This is done periodically in intervals of 10 seconds. 
This interval is chosen because decrease of the interval will not gain more 
informativeness to the users. On the other hand, with the decrease of the interval a 
disruption of the controllers’ performance is observed. Traditional sockets and 
CNDEP protocol [10] are used for connection with the controllers. 

The view consists of various JSP pages – for observing of measurement values 
and for statistical data, for HTML and WML clients and etc. The formation of a 
HTTP response with temperature and humidity data from the Measurement Java 
Bean component is shown on figure 2 and the view of the response in the client’s 
browser is shown on Figure 3.  

 

   Figure 2. Formation of the response using a JavaBean.                Figure 3. User Interface 

A JSP page may contains all standard elements of an HTML page (HTML tags, 
content text, etc.) among with some Java code incorporated as action tags and 
scriplets. Figure 2 exposes the use of the jsp tag library for extracting dynamic data 
from a Java bean. The jsp:useBean directive is used to initialize the Measurement 
bean. The scope application means that the bean will be shared for every Servlet and 
JSP in the web application, thus the same bean will be used every time. The 
directives jsp:getProperty are used for extracting of temperature and humidity values 
from the Measurement bean. 

For the Web server an Apache Tomcat 5.5.14 servlet container from Apache 
Software Foundation is used. It is run on a 335MHz Pentium II machine, with 256 
MB operational memory, and OS Debian Linux 2.4.27-2-386. The system is tested 
and it proves to operate correctly with PC, PDA, and Cellphone clients. 

CONCLUSIONS AND FUTURE WORK 
The presented system shows the possibility for adaptation of open and 

standardized approaches, well-proven architectures, high level abstraction, and 
standard system protocols in distributed measurements. The use of off-the-shelf 
solutions, like internet browsers and web servers, brings various advantages and gives 
the system added flexibility and scalability.  

Web servers have a build-in support to high loads, and authentication 
mechanisms. They are well tested and supported and various development tools exist. 



The standard user interface used – web browser, allows access to the system from 
various clients.   

Some possibilities for future work include adaptation of web service 
architecture and employing rich client applications. Web services can be adopted by 
the controllers offering services like measurement of temperature and humidity. The 
web server will use these services basing communication on SOAP/HTTP. Rich 
client applications can be employed for clients having enough resources.  

ACKNOWLEDGEMENTS 
The presented work is supported by National Science Fund of Bulgaria project 

– “ВУ-966/2005”, entitled “Web Services and Data Integration in Distributed 
Automation and Information Systems in Internet Environment”, under the contract 
“ВУ-МИ-108/2005”. 

REFERENCES 
[1] Borriello, G., R. Want. Embedded computation meets the world wide web. Communications of 
ACM, Vol. 43,  May 2000, pp. 59-66.  

[2] Folwer. M, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R. Stafford. Patterns of Enterprise 
Application Architectures, Addison Wesley, 2002, ISBN 0-321-12742-0. 

[3] Fortino, G., D. Grimaldi, L. Nigro. Distributed measurement patterns based on java and web 
tools. IEEE Autotestcon Proceedings, Sep. 1997, pp. 624-628. 

[4] Jazdi, N.. Component-based and distributed web application for embedded systems. Proceedings 
of International Conference on Intelligent Agents, Web Technology and Internet Commerce – 
IAWTIC´2001, Las Vegas, USA, 2001. 

 [5] Pianegiani, F., D. Macii, P. Carbone. An open distributed control and measurement system 
based on abstract client-server architecture. IEEE Transactions on Instrumentation and 
Measurement, Vol 52, Issue 3, Jun 2003, ISSN:0018-9456, pp 686-692. 

[6] Schneeman, R. D.. Implementing a standards-based distributed measurement and control 
application on the internet. http://ieee1451.nist.gov/framework.pdf, 1999. 
[7] Spasov, G., N. Kakanakov. CGI-based applications for distributed embedded systems for 
monitoring temperature and humidity. Proceedings on the International Conference – 
CompSysTech‘04, 17-18 June 2004, Rousse, Bulgaria, pp. I.6-1 – I.6-6. 

[8] Spasov G., N. Kakanakov, N. Lupanov. Three-tier distributed applications. Proceedings on the 
conference Computer Science, 6-8 Dec 2004, pp. 172-177. 

[9] Kakanakov, N.. Web based models for distributed automation. Journal of Automatics and 
Informatics, 2006 (in press). (in Bulgarian) 

[10] http://net-lab.tu-plovdiv.bg/CNDEP/ – Controller Network Data Extracting Protocol. 

[11] http://java.sun.com/products/jsp/ – Sun Microsystems JavaServer Pages. 

[12] http://net-lab.tu-plovdiv.bg/ – Virtual laboratory of computer networks and distributed systems. 


