International Conference on Computer Systems and Technologies - CompSysTech’06

Controller Network Data Extracting Protocol — Design and
Implementation

Nikolay Kakanakov, Ilvan Stankov, Mitko Shopov, Grisha Spasov

Abstract: The paper presents the design and implementation of a UDP-based protocol for Distributed
Automation Systems. It is based on client/server interactions. Protocol specification is given together with its
syntax, grammar and semantics. Message formats, protocol vocabulary and communication rules are
described. The possible applications of the protocol are discussed and a sample implementation of the
server and client are shown in the paper. Initial tests of the effectiveness of the protocol are made. The
experiments are test-bed, carried out in the experimental network in “Distributed Systems and Computer
Networks Lab” in Technical University of Sofia, branch Plovdiv (http://net-lab.tu-plovdiv.bg/). They include
evaluation of the communication capacity of the protocol. The minimum, maximum and average response
times are calculated from the experimental results.

Key words: Embedded Networking, Protocol Design and Implementation, Distributed Automation.

INTRODUCTION

Over the recent years there is a trend for adaptation of enterprise technologies in
Distributed Automation Systems. The vendor specific standards are replaced with popular
open standards of communication between automation nodes in plants, and between
plants themselves. Most automation standards are limited in distance, number of devices
or speed. This leads to implementations of automation protocols based on standard
TCP/IP communication over standard links (Ethernet, WiFi, ATM) [1, 5, 6].

The paper deals with implementation and design of UDP-based protocol for
communication with automation nodes in a plant.

Background

A protocol is a kind of agreement about the exchange of information in a distributed
system. It defines a precise format for valid messages (syntax); the procedure rules for
data exchange (grammar); and a vocabulary of valid messages that can be exchanged
with their meaning (semantics). In a way, it formalizes the interaction by standardizing the
use of a communication channel. The protocol, then, can contain agreements on the
methods used for [2, 4]:

« Initiation and termination of protocol data units (message);
« Formatting and encoding data.

e Synchronization of senders and receivers;

« Detection and correction of transmission errors;

The widespread use and expansion of communications protocols is both a
prerequisite to the Internet, and a major contributor to its power and success. Object-
oriented programming has extended the use of the term to include the programming
protocols available for connections and communication between objects [2].

Generally, only the simplest protocols are used alone. Most protocols, especially in
the context of networking, are layered together into protocol stacks where the various
tasks listed above are divided among different protocols in the stack [2].

A protocol specification consists of five distinct parts. To be completed, each
specification should include explicitly [2]:

e The service to be provided by the protocol

e The assumptions about the environment in which the protocol is executed

e The vocabulary of messages used to implement the protocol

e The encoding (format) of each message in the vocabulary

e The procedure rules guarding the consistency of message exchanges
These five parts for CNDEP specification are described in the following section.

- 111A.14-1 -

International Conference on Computer Systems and Technologies - CompSysTech’06

CONTROLLER NETWORK DATA EXTRACTING PROTOCOL

CNDEP works on application layer of TCP/IP protocol stack (figure 1). As a transport
protocol it uses UDP. An area where UDP is especially useful is the client-server
applications — this is the CNDEP base. The client sends a short request to the server and
expects a short reply back. If either the request or reply is lost, the client can just time out
and try again. CNDEP mechanism is replying back a suitable message — a time out for
instance, to the user or any application. In this case not only is the code simple, but fewer
messages are required (one in each direction) than with a protocol requiring an initial
setup.

The reasons for UDP using are: short message exchange; fast communication; good
reusability of communication channel; service of devices in sensible time [4].

| Application Layer

ONDEP

| TCP H UDP |TransportLayer

| IP | Internet Layer
802.11|| 802.3 | Network Access Layer

Figure 1: The place of CNDEP in TCP/IP stack.

Design principles have been applied to create a communication protocol over wide
spread regular TCP/IP networks. These principles include effectiveness, reliability, and
resiliency. All efforts are aimed to reach these features in most appropriate way [4].

Effectiveness — The particular reasons CNDEP is believed to be effective: fast
transmissions; reliable of data exchange; computing power; working environment;

Reliability — Assuring reliability of data transmission involves error detection and
correction, or some means of requesting retransmission. These functions are divided
between Data Link layer and our application (described below).

Resiliency — it addresses a form of network failure known as topological failure in
which a communications link is cut, or degrades below usable quality. These functions are
inherited from the network layer (protocol IP).

The main purpose of CNDEP is for data extraction. Extraction could be done from
any device that implements server side of CNDEP. Server side extracts data from sensors,
for instance, and waits for any request to send back a suitable respond.

The environment of the protocol is defined from Local Area Networks. The idea of
CNDERP is for data extraction in networks where data producing layer is situated behind a
server. This part of a protocol description is consistent with direct relation to Protocol
Service Specification. All assumption made for LAN and all advantages of client/server
architecture are in present for protocol environment.

The data flow is from client to server. Client application makes all necessary data
processing over received response. It is supposed that the client application is working on
machine with better computing capabilities than the server application. Time sequence
diagram of possible interactions is shown on figure 2.

Client Controller Client Controller Client Controller
— /?eq — = Conn — = ~

Uest Dal‘a angUre —

o« " P P
\
A

O(\L

L] a) L] L b) L1 L c) L

Figure 2: Protocol interactions.

- 11A.14-2 -

International Conference on Computer Systems and Technologies - CompSysTech’06

The protocol vocabulary defines three distinct types of messages: SET for a message
setting parameters, combined with a positive or negative acknowledgment; GET for an
extracting message, combined with a positive or negative acknowledgment, and TEST
messages for keep-alive transmission. The vocabulary can be succinctly expressed by set
equations - (1), (2) and (3):

Veeouest = {TEST,GET, SET} (1)
Veesponse = {OK, ERROR, DATA} 2)
VPROTOCOL = (VREQUEST ><VRESPONSE)/(TEST’ DATA) (G ET’OK) (SET' DATA) (3)

The CNDEP message consists of start byte, end byte and data fields. The data fields
are used to encode the sessions, command, function, response type and actual data.
Structure of the message is shown on figure 3.

1 byte 1 byte 1 byte 1 byte variable length 1 byte
[STX | session-id| command-id | function-id] data |ETX]
Fequest
1 byte 1 byte 1 byte varnable length 1 byte
m}(| session-id| response-id | data | ETXI
Response

Figure 3: CNDEP messages.

CNDEP uses ASCII symbols for start and end of messages, respectively 02 (STX)
and 03 (ETX). The exchanged messages are byte oriented. When a request is received by
any device, the command is extracted from the message and is parsed. Each message
type can further be refined into a class of lower-level messages, consisting for instance of
one sub-type for each character code to be transmitted — figure 4.

Message ::= {(Request) | (Response)};
Request ::= STX (Session_ID)(Command _ID)[(Function _ID)][(Data)]ETX;

Response ::= STX (Session_ ID)(Response _ ID) [(Context — Type)][(Data) |ETX;
Figure 4: BNF description of CNDEP messages.

Session_ID ::= Byte, representing the session (for retransmission).

Command_ID ::= Byte, representing the command to controller.

Function_ID ::= Byte, showing subcommand (if any).

Response_ID ::= Byte, representing the response type.

Context-Type ::= MIME Types — describes the type of the data field.

Data ::= Variable Length String.

The exact value of each field is extracted after obligatory parsing. Parsing is needed
for recognizing what function to be executed by the server (device). The first one is
describing the user session that represents Request/Respond pair. Command-id shows
the command number as a consequence number in the list of all commands (Table 1).
This field is used through the time of protocol developing. The function-id field comprises
the real tasks that have to be done as sub-function of some command. Data fields are
character oriented — strings with different length.

Table 1: Some CNDEP commands

GET SET
Bytevalue 0 1 2 122 | 129 253 254 255
Command Test Temperature Humidity User | User Temperature Humidity Test
name (OK) Data | Data Options Options (Error)

Since CNDEP is an asymmetric protocol, it has different function in the client and
server parts. Assuming that the server runs on an embedded device with restricted

- I1A.14-3 -

International Conference on Computer Systems and Technologies - CompSysTech’06

resources, its functions are design related only to the automation. Session logs, lost of
packets and retransmissions are delegated to the client.

Server application accepts and parses requests made by the clients. It recognizes
commands requested and contacts the appropriate sensor or actuator to perform the
action. State transition diagram of the server’s stub is given on Figure 5.

ontact
Actuet ors

Request

processng

Figure 5: State Transition Diagram of server’s application.

Clients track sessions (which are actually request-response pairs) in order to
recognize which response corresponds to a given request. The session is used in error
checking in order client to find duplicated packets in case of retransmission.

If error occurs in transmission, client application has the opportunity to insist a
retransmission. Retransmission is optional feature. The ideology is not reliable
communication but last-is-best. The latest data returned from the controllers is preferred
because it is more actualize.

The Controllers did not have to track duplication of requests. Two subsequent
identical requests will lead to two execution of the command in the request and therefore
to two identical responses. There is no actual problem of duplicated execution. The
duplicated responses will be noticed by the client application and it will decide which of
them to use. In the simple case duplicated responses will be discarded, but in some
occasions the latest arrived packet could overwrite the old one. The algorithm of the client
application is shown on figure 6.

1. Send Request;
2. If (OK or DATA not received for TIME_OUT ms)
REPEAT - -;
Else goto 12;
3. If(REPEAT <=0)
goto 11;
4. Generate random number T in [MIN_DELAY .. MAX_DELAY];
5. Wait T milliseconds;
6. Send Request;
7. If (OK or DATA not received for TIME_OUT ms)
REPEAT - -;
Else goto 12;
8. IfREPEAT <=0 goto 11;
9. T=T*2;
If (T > UPPER_DELAY)
T =UPPER_DELAY;
10. goto 5;
11. Error — Destination unreachable in REPEAT retries;
12. Done.

Figure 6: Example CNDEP client application.

- 111A.14-4 -

International Conference on Computer Systems and Technologies - CompSysTech’06

Experimental analysis of the implementation

After a particular protocol is designed and implemented it must be validated.
Validation can be done by simulation, test-bed experiments or real-word deployment.

Initial validation chosen for CNDEP is test-bed experiments and estimation of
request-response times of some of the CNDEP commands. The experiments are carried
out in “Distributed Systems and Computer Networks Lab” in Technical University of Sofia,
branch Plovdiv [7]. The experimental network consists of embedded systems and a client.
The embedded systems involved are DS TINI [8] and IPC@Chip [9]. The client is a PC
running Windows XP. The nodes are connected in switched Ethernet network, working on
100Mbps.

The estimation is made for one command of each type — TEST, GET and SET. The
estimated command is executed repeatedly a number of times in equal intervals. The
graphical representation of the results for TEST command is shown on figure 7.

ms
21 4

IPC@Chip
—DSTIN

N WMM
16 1

15 4 ?

0 4

Figure 7: Request/Response times of TEST command for two different embedded systems.

The experimental results are used for calculating the minimum, maximum and
average values of the request/response times per command, per embedded system. The

calculated values in milliseconds for DS TINI [8] and IPC@Chip [9] are shown in Table 2.
Table 2. CNDEP Request/Responsetimes

command TEST GET SET
contro min | max avg+ o min max avg+ o min | max avg+ o
IPC@Chip 16.31 (1989 |17.43+0.20 | 334.76 | 338.25 | 336368 +0.22 | 4169 | 4377|4268 + 0.13
DS TINI 15.91 [17.27 | 164+ 0.08 |518.73 | 52416 | 52077 +0.31 | 55.76 | 59.31 | 57.04 + 0.26

The relatively big values for the GET command can be explained by the fact that the
time for contacting the sensor to get temperature or humidity is about 250ms.

CONCLUSIONS AND FUTURE WORK

The presented protocol is suitable for developing Distributed Automation Systems in
TCP/IP environment. It is a custom application layer protocol implemented over the
standard protocols stack, which makes it applicable for accessing data from the networked
embedded devices.

The promoted results show that the response time has small deviation from its mean.
It is very important for soft real-time embedded devices to have relatively constant delays,
which means predictability.

In [3] request/response times of echo protocol for embedded devices are presented.
The difference in request/response times of the echo protocol and CNDEP allows
separating protocol delay from TCP/IP stack delay. Comparison between the two protocols
shows that CNDEP did not lead to significant delays of communication.

Further, the simulation analysis of the protocol effectiveness (calculation of maximum
nodes that can work together in a single network using CNDEP; comparison of CNDEP
implementation over TCP and UDP; protocol traffic measurement; etc.) and development
(adding new commands; developing version of CNDEP for wide area networks; etc.)
should be done.

- 111A.14-5 -

International Conference on Computer Systems and Technologies - CompSysTech’06

ACKNOWLEDGEMENTS

The presented work is supported by National Science Fund of Bulgaria project — “BY-
966/2005”, entitled “Web Services and Data Integration in Distributed Automation and
Information Systems in Internet Environment”, under the contract “BY-MWU-108/2005".

REFERENCES

[1] Estrin, D., G. Borriello, R. Colwell, J. Fiddler, M. Horowitz, W. Kaiser, N. Leveson,
B. Liskov, P. Lucas, D. Maher, P. Mankiewich, R. Taylor, J. Waldo, Embedded,
Everywhere. A Research Agenda for Networked Systems of Embedded Computers, NAP,
Washinton, D.C. 2001, ISBN 0-309-07568-8.

[2] Holzmann, G., Design and Validation of Computer Protocols, Prentice Hall, 1991,
ISBN: 0-13-539925-4.

[3] Kakanakov, N., Experimental Analysis of Client/Server Applications in Embedded
Systems, proceedings of ELECTRONICS'05, 21-23 Sept.2005, Sozopol, Bulgaria, book 4,
pp 97-102, ISBN:954-438-520-7.

[4] Stallings, W., High-Speed Networks and Internets, 2" Ed, Prentice Hall, 2002,
ISBN: 0-13-032221-0.

[5] Topp Topp, U., P. Miller. Web based service for embedded devices. Lecture
Notes in Computer Science, Volume 2593 /2003, pp. 141 — 153, ISSN: 0302-9743.

[6] Youngblood, G. M., Smart Environments, Ch. 5: “Middleware”, pp. 101-127, 2004.,
ISBN: 0-471-54448-5.

[7] http://net-lab.tu-plovdiv.bg/ - Laboratory of Distributed Systems and Computer
Networks.

[8] http://www.maxim-ic.com/products/tini/ - DS TINI Homepage.

[9] http://www.beck-ipc.com/ipc/ - IPC@Chip Homepage.

ABOUT THE AUTHORS

Nikolay Kakanakov, PhD Student, Department of Computer Systems and
Technologies, Technical University of Sofia, branch Plovdiv, Phone: +358 32 659 758, e-
mail: kakanak@tu-plovdiv.bg.

Ivan Stankov, BSc graduate student, Department of Computer Systems and
Technologies, Technical University of Sofia, branch Plovdiv, Phone: +358 32 659 758, e-
mail: istankov@tu-plovdiv.bg.

Mitko Shopov, BSc graduate student, Department of Computer Systems and
Technologies, Technical University of Sofia, branch Plovdiv, Phone: +358 32 659 758, e-
mail: mshopov@tu-plovdiv.bg.

Assoc. Prof. Grisha Spasov, PhD, Department of Computer Systems and
Technologies, Technical University of Sofia, branch Plovdiv, Phone: +358 32 659 724, e-
mail: gvs@tu-plovdiv.bg.

- I1A.14-6 -

